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A Theory of Indicative Bidding†

By Daniel Quint and Kenneth Hendricks*

When selling a business by auction, sellers typically use indicative 
bids—nonbinding preliminary bids—to select a small number of bid-
ders to conduct due diligence and submit binding offers. We show 
that if entry into the auction is costly, indicative bids can be infor-
mative: symmetric equilibrium exists in weakly increasing strategies, 
with bidders “pooling” over a finite number of bids. The equilib-
rium helps the seller select high value bidders with higher likelihood, 
although the highest value bidders are not always selected. When the 
number of potential bidders is large, revenue and total surplus are 
both higher than when entry is unrestricted. (JEL D44, D83)

Auctions with a fixed number of bidders have been the subject of a large and dis-
tinguished theoretical and empirical literature. However, in many applications, 

potential bidders have to acquire additional information at substantial cost before 
bidding. For example, in timber auctions, bidders perform “cruises” to obtain esti-
mates of the volume and species composition of wood; in oil and gas lease sales, 
bidders invest in seismic surveys to learn more about the likelihood of finding hydro-
carbons; and in takeover auctions, buyers conduct extensive due diligence to deter-
mine the value of the target. These costs are analogous to entry costs, in the sense 
that bidders are unwilling to bid without acquiring this information. The decision 
to incur these costs means that the number of actual bidders and the distribution of 
their values are endogenous. This fact has important implications for the design of 
optimal auctions. Since sellers bear some or all of the participation costs indirectly 
through lower bidder participation and bids, they have an incentive to restrict entry 
and select only those bidders most likely to have the highest willingness to pay. It 
also has important implications for implementation, which requires knowing the 
distribution of bidder values: when entry is costly, empirical researchers have to 
estimate this distribution taking into account the selection process for bidders.

This paper studies the effectiveness of using indicative bids to select bidders 
for an auction. This selection mechanism is commonly used in utility privatiza-
tion, divestiture sales, and institutional real estate (see Kagel et al. 2008). It is used 
extensively in takeover auctions, which rank second only to treasury auctions in the 
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total value of assets sold each year. The value of mergers and acquisitions of US 
companies over the past twenty years has ranged from $400 billion to $1.5 trillion 
dollars per year;1 about half of these deals involve an auction, and nearly all of these 
employ some form of indicative bidding.2 Therefore, understanding how indicative 
bids work in takeover auctions is important in its own right. It is also important for 
obtaining estimates of the distribution of bidder values in these auctions and con-
ducting counterfactual analyses of alternative selling mechanisms.

Boone and Mulherin (2009) describes how sellers control entry into takeover auc-
tions. Sellers contact many possible bidders; those who are interested are required 
to sign confidentiality and standstill agreements. These agreements commit bidders 
not to make public their interest or bids, nor to make unsolicited bids; in exchange, 
they are given access to nonpublic information on the target. (Thus, in the usual 
auction terminology, those buyers who signed such agreements make up the set of 
potential bidders.) Bidders then submit preliminary indications of interest, which 
include an estimate or range of estimates for the price they expect to be willing to 
pay for the target. The bidders who report the highest willingness to pay are invited 
to conduct extensive due diligence and submit formal, binding bids.3 Due diligence 
includes access to the data room where legal and accounting teams can inspect and 
verify the target’s contracts and financials. Most of the buyers’ costs occur at this 
stage of the process, and the costs can run into the millions of dollars. The indicative 
bids themselves are costless, in that they are never paid by the buyers; and they are 
nonbinding because they do not restrict in any way the real offers that a buyer may 
subsequently make in the auction. Despite this absence of commitment, the use of 
indicative bids in takeover auctions suggests that sellers find them informative.

We use a two-stage model to study this practice. We assume buyers observe noisy 
real-valued signals about their private values, and can learn their values perfectly by 
incurring an entry cost. The initial signals are independently distributed, but values 
can be correlated conditional on the signals, allowing for the presence of common 
value components. Our model nests all of the models that have been considered in 
both the theoretical and empirical literatures on auctions with costly entry. Prior 
to entry, buyers are asked to simultaneously submit indicative bids or opt out. The 
seller commits to selecting the ​n​ buyers (typically two or three in practice) who send 
the highest indicative bids, with ties broken randomly. If fewer than ​n​ buyers submit 
indicative bids, then all of them enter the auction; if all buyers opt out, then no sale 
occurs. In the second stage, the selected bidders incur their entry costs, learn their 
values, and submit binding bids in a second-price auction. Ye (2007) shows that a 

1 2015 Mergerstat Review (excerpt), from Business Valuation Resources, LLC, downloaded Sept. 1, 2015 from 
http://www.bvresources/pdfs/2015MergerstateReviewExcerpt.pdf. 

2 Using Securities and Exchange Commission (SEC) filings, Boone and Mulherin (2007) and Gentry and Stroup 
(2017) study over a thousand takeovers of public companies announced between 1989 and 2009. They find that in 
roughly half the deals, the company was offered for sale to multiple competing buyers, and that in most of these 
deals indicative bids were used to determine which buyers could conduct due diligence and submit binding bids. 

3 Boone and Mulherin (2007) reports that in their sample of 202 auctions, the average number of buyers con-
tacted is 21, the average number that sign agreements is 7, and the average number that submit binding bids is 1.57. 
Gentry and Stroup (2017) reports similar numbers for their sample. Unfortunately, neither reports the number of 
buyers submitting indicative bids. 
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fully separating equilibrium fails to exist in this model. We are interested in charac-
terizing the symmetric equilibria that do exist.

Our central result is that indicative bids yield a partial sorting of buyers based 
on their signals (i.e., types) when the expected rents from the private information 
obtained in the second stage are small relative to entry costs. This condition is sat-
isfied when most of the learning occurs prior to entry, or when the information 
obtained in the second stage is highly correlated across bidders. In this case, the 
buyers’ incentives are sufficiently aligned with those of the seller that indicative 
bids are informative: the seller wants to restrict the number of buyers who incur the 
entry cost, and buyers want to avoid being selected and paying this cost if they are 
unlikely to win. Low-value buyers will try to separate themselves from high value 
buyers by submitting lower indicative bids. We show that a symmetric equilibrium 
is a finite partition of the space of buyers’ types. Buyers with types in the same ele-
ment of the partition submit the same indicative bid, and buyers in higher elements 
submit higher bids. Thus, the equilibrium helps the seller select high value buyers 
with greater likelihood. We prove existence of a symmetric equilibrium (uniqueness 
can be shown in some special cases), and explore some comparative statics.

How well does the indicative bidding mechanism perform? A natural benchmark 
is an auction in which entry is unrestricted. Buyers decide on the basis of their 
private information whether or not to enter the auction, pay the entry cost, update 
their values, and submit binding bids. Our main theoretical result is that indicative 
bidding yields greater revenue and greater total surplus than the unrestricted auction 
when the number of potential buyers is large.4 Under an additional assumption, 
ex ante bidder surplus is higher with indicative bidding as well. Through numerical 
examples, we find that these results tend to hold even when the number of buyers is 
small. Thus, when entry is costly, the introduction of indicative bids does not involve 
the standard trade-off in optimal auctions between revenues and efficiency.

Indicative bidding does better than unrestricted entry but, as Lu and Ye (2017) 
points out, it is hardly optimal within the class of two-stage mechanisms. The 
main alternative proposed in the literature is an entry rights auction (Fullerton and 
McAfee 1999, Ye 2007). In characterizing the optimal two-stage mechanism, Lu 
and Ye (2017) shows that it can be implemented under certain conditions using an 
all-pay auction for entry rights followed by a second-price auction with handicaps. 
However, in our view, an entry rights auction may not always be feasible, particu-
larly in the case of takeover auctions, because it requires buyers to commit to pay-
ing substantial sums before they conduct due diligence. This would undermine the 
purpose of due diligence and put management at risk of shareholder lawsuits if the 
asset turned out to be worth less than they anticipated. Even worse, since revenue is 
based in part on the expected, rather than actual, valuation of the asset, there is a risk 
of adverse selection among sellers: a rush of entry by sellers with worthless assets 
could crowd out sellers with legitimate ones and increase the need for due diligence. 
If mechanisms requiring payments before bidders perform due diligence are ruled 

4 We compare auctions without reserve prices, but in the unrestricted case, the optimal reserve price goes to 
zero as the number of buyers gets large; so when this number is large enough, indicative bidding outperforms the 
optimal standard auction. 
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out, then it is not clear that one can do much better than indicative bidding followed 
by an auction.5

This paper contributes to the large literature on auctions with costly entry. The 
focus of the theoretical literature is on characterizing rational entry and bidding 
decisions for a given entry process and information environment, and on designing 
mechanisms that are more efficient or generate more revenue. One branch studies 
environments in which buyers have no private information prior to entry and pay 
a cost to learn their value. In this setting, the seller does not have to worry about 
selecting buyers, which is the central issue of our paper. Levin and Smith (1994) 
characterizes the mixed strategy entry equilibrium in private value English auctions, 
and shows that the failure of bidders to coordinate entry leads to outcomes that could 
be improved by capping entry at a fixed number. Crémer et al. (2009) characterizes 
the optimal mechanism, and shows that the seller can use entry fees and subsidies to 
extract all buyers’ surplus. In the absence of such payments, Bulow and Klemperer 
(2009) demonstrates that auctions with unrestricted entry are less efficient than 
sequential mechanisms but typically generate more revenue.6 A second branch stud-
ies environments in which buyers know their value, or have a signal of their value, 
before paying an entry cost. The entry cost can be bidding costs as in Samuelson 
(1985) or additional information acquisition costs as in Ye (2007). This setting leads 
to selective entry, since bidders with high values are more likely to enter than bidders 
with low values. Samuelson (1985) shows that the entry equilibrium has a thresh-
old property and that restricting the number of bidders could increase revenues. Ye 
(2007) shows that an entry rights auction can be used to induce efficient entry. Lu 
and Ye (2017) characterizes the optimal two-stage mechanism. Our contribution to 
this literature is to model the use of “cheap talk” to resolve the coordination problem 
faced by buyers.

Recently, an empirical literature on auctions with costly entry has developed. 
The focus of this literature is on identifying and estimating the joint distribution 
of bidder signals (or entry costs) and values in order to evaluate different entry/
auction formats. Athey, Coey, and Levin (2013) and Athey, Levin, and Seira (2011) 
estimate a model in which loggers and mills in timber auctions pay an entry cost 
to learn their values. From an econometric perspective, the key simplication is that 
entry is not selective: costs and values are independently distributed. Bhattacharya 
et al. (2014), Li and Zheng (2009, 2012), Roberts (2013), and Roberts and Sweeting 
(2013) extend this model to account for selective entry by estimating parametric 
models of bidding for highway contracts and timber. In their models, bidders receive 
signals affiliated with their values before paying the cost to learn their values, and 
the (signal, value) pairs are independently distributed across bidders. Marmer et 
al. (2013) provides nonparametric tests to distinguish between the two kinds of 
entry models; Gentry and Li (2014) provides conditions under which the joint dis-
tribution of signals and values is identified. In a recent working paper, Gentry and 

5 One could still improve on the mechanism we study by varying the number of bidders ​n​ advancing to the auc-
tion in response to the indicative bids received, or (as we show in one of our theorems) by partly subsidizing entry 
when the number of potential bidders is large. 

6 Other papers in this branch include McAfee and McMillan (1987), Burguet and Sákovics (1996), Menezes and 
Monteiro (2000), Tan (1992), Ye (2004), and Compte and Jehiel (2007). 
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Stroup (2017) apply the affiliated signal model to estimate the joint distribution of 
signals and values in takeover auctions from data on the numbers of potential and 
actual bidders and the deal premium. They use their estimates to examine whether 
takeover auctions generate higher prices than negotiations. On the normative side, 
our contribution to this literature is to provide an alternative entry format that should 
be considered, at least for auctions that meet our small rents condition (which is a 
testable restriction). On the positive side, our analysis informs empirical researchers 
studying takeover auctions as to how they can use the number (and values) of indic-
ative bids to help identify the joint distribution of signals and values.

Our paper also contributes to the voluminous literature on “cheap talk” games. Our 
indicative bidding equilibria are similar to the “cheap talk” equilibria of Crawford 
and Sobel (1982): indicative bids are monotonic in buyers’ initial information, but 
only a finite number of different bids are used in equilibrium, and different types 
of buyers “pool” on the same bid. In their seminal paper, Crawford and Sobel show 
that cheap talk can improve the ex ante payoffs of both parties when a biased sender 
has information relevant to the receiver’s decision problem. Farrell and Gibbons 
(1989) and Matthews and Postlewaite (1989) similarly show that cheap talk can be 
informative prior to bilateral bargaining, and can therefore expand the set of equi-
librium payoffs. Our contribution to this literature is to introduce a natural kind of 
receiver commitment into a cheap talk setting, which sharpens the predictions of 
the model. As Farrell and Gibbons (1989) have observed, in standard cheap talk 
games, the receiver cannot commit to a choice of outcome as a function of the mes-
sages. Instead, the messages derive meaning only from the receiver’s interpretation 
of them and the receiver must act optimally given that interpretation. In our setting, 
we assume the seller commits both to the rules of the auction (which is standard) 
and to how he will select entrants based on the indicative bids received. In particular, 
we assume the seller commits to selecting a fixed number of bidders, choosing those 
who send the highest indicative bids, and breaking ties randomly. This commitment 
to a monotone selection rule eliminates much of the multiplicity of equilibria that 
arises in cheap talk games. In particular, it rules out a “babbling” equilibrium, and 
any equilibrium where adverse off-equilibrium-path beliefs are used to deter unused 
messages.7

We should also mention two other related papers that feature entry models whose 
equilibria have similar structures to ours, but where voluntary delay rather than com-
munication is used to screen and coordinate entrants. Levin and Peck (2003) does 
this in an oligopoly setting, where post-entry competition is symmetric and firms 
have private information about their entry costs; with multiple discrete opportunities 
to enter, a firm with intermediate-level costs will wait to see that his opponent does 
not enter for a certain number of periods before entering himself. McAdams (2015) 
considers second-price auctions with costly bidding and reserve prices, where 
bids can be submitted in discrete rounds and are made public after each round. 
In equilibrium, a bid deters any future bids, and a new set of bidder types become 

7 Navin Kartik and Joel Sobel (private communication, August 27, 2015) have similarly shown that imposing 
monotonicity on both the sender’s and receiver’s strategies in a standard cheap talk setting, combined with iterated 
weak dominance, uniquely selects the “most informative” cheap talk equilibrium. 
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willing to bid (if nobody has bid prior) in each round. Like our model, both of these 
models admit a unique symmetric equilibrium in thresholds.

The paper proceeds as follows. Section I presents the model. Section II char-
acterizes symmetric equilibrium and proves equilibrium existence. In Section III, 
we use an example to illustrate the construction of the symmetric equilibrium. 
In Section  IV, we evaluate the performance of the indicative bidding mechanism 
against the alternative of unrestricted entry, and establish general results for the case 
where ​N​ is large. Section V discusses extensions. Section VI concludes. Proofs are 
in the Appendix; some lengthier proofs are in a separate online Appendix.

I.  Model

We begin by describing the environment and the indicative bidding mechanism 
we consider and the assumptions we make.

Our model is based on the “private value updating” model of Lu and Ye (2017). 
There are ​N  ≥  3​ potential bidders, indexed by ​i​. Bidder ​i​’s value of the asset is ​​V​i​​​.  
Initially, she does not know ​​V​i​​​ , but observes a real-valued, private signal ​​S​i​​​ of it, 
which we will refer to as her type. She learns ​​V​i​​​ perfectly during due diligence. We 
assume that all buyers face the same cost of performing due diligence, denote this 
cost by ​c​ , and also refer to it as the entry cost.8

Let ​V  =  (​V​1​​,  … , ​V​N​​)​ and ​S  =  (​S​1​​,  … , ​S​N​​)​. (Throughout, we use capital let-
ters to denote random variables, and the corresponding lowercase letters to indi-
cate their realizations.) We assume the joint distribution of ​(V, S)​ is continuous and 
exchangeable with respect to bidder indices. We assume that ​{​S​i​​}​ are independent 
across ​i​ , and that ​​S​i​​​ is independent of ​​{​V​j​​}​j≠i​​​ , but we allow for the possibility that  
​{​V​i​​}​ are correlated conditional on ​S​ , i.e., that the new information learned during due 
diligence is correlated across bidders. (The literature on optimal mechanism design 
in this setting makes the assumption that ​(​V​i​​, ​S​i​​)​ are independent across ​i​ , to rule 
out full surplus extraction à la Crémer and McLean (1988). While we will maintain 
the assumption of independent types ​{​S​i​​}​ , since we study a particular mechanism, 
we have no need to assume that ​{​V​i​​}​ are independent given ​S​.9) We assume that ​​
S​i​​​ has finite support ​[​ S _ ​, ​ 

_
 S ​]​ , and a continuous (marginal) distribution that admits a 

continuous density bounded below on its support. Under these assumptions, there is 
no loss of generality in assuming that ​​S​i​​​ is distributed uniformly on ​[0, 1]​, which we 
therefore assume.10

8 If the seller also incurs costs directly for each buyer who goes through this process, it would strengthen the 
seller’s incentive to limit entry, but would not change bidder play within the mechanism we study. 

9 Once ​(​S​i​​, ​V​i​​)​ are assumed to be independent across ​i​ , one can use the normalization from Eső and Szentes 
(2007) and, without loss of generality, express ​​V​i​​​ as ​u(​S​i​​, ​T​i​​)​, where ​u​ is increasing in both arguments, ​{ ​T​i​​ }​ are 
independent across ​i​ , and ​​T​i​​​ is independent of ​​S​i​​​ and uniformly distributed on ​[0, 1]​. The interpretation is that ​​T​i​​​ is 
the new information that buyer ​i​ obtains about her value during due diligence. Our model is more general than this, 
primarily by allowing ​{​T​i​​}​ to be correlated across bidders. In addition, however, when ​{​V​i​​}​ are not independent, the 
expression of ​​V​i​​​ as ​u(​S​i​​, ​T​i​​)​, with ​​T​i​​​ independent of ​​S​i​​​ , is no longer a normalization but a substantive assumption, 
which we have no need to impose. 

10 That is, if ​​F​​S​​​ denotes the marginal distribution of ​​S​i​​​ , one could equivalently assume bidder ​i​ observed ​F​​​S​​ (​S​i​​)​ , 
which contains the same information as ​​S​i​​​ but is distributed uniformly on ​[0, 1]​. 
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The indicative bidding mechanism we consider consists of a cheap talk stage 
and an auction stage. In the cheap talk stage, the seller asks potential buyers if they 
are interested in bidding for the asset, and if so, how much they are willing to pay. 
These bids are not binding, and are known as indicative bids. An indicative bid can 
be a precise number, although often the seller asks the bidder to report a range in 
which she believes her willingness to pay is likely to fall. We formalize this stage 
of the game by assuming that buyers simultaneously send messages to the seller. A 
message is denoted by ​m​ , and the set of messages available to each bidder is the set 
of integers ​{ 0, 1,  … , ​ 

_
 M ​}​ , where “​0​” is “opt out,” or decline to participate, and ​​ 

_
 M ​​ 

is allowed to be either finite or infinite. Note that ​​ 
_

 M ​​ is a parameter of choice for the 
seller: for example, the seller could simply ask each buyer to opt in or opt out, in 
which case ​​ 

_
 M ​  =  1​. The substantive restriction here is that the set of opt-in mes-

sages is bounded below (i.e., there is a lowest “opt-in” message), fully ordered, and 
countable. Given this restriction, there is no loss of generality in assuming that the 
message space consists of nonnegative integers.11

The auction stage consists of an English auction. The seller selects bidders for the 
auction based on the messages received in the cheap talk stage. We assume the seller 
commits to a maximal number of bidders ​n​ and, if more than ​n​ bidders opt in, com-
mits to selecting the bidders who sent the highest messages, breaking ties randomly. 
If all bidders opt out, then the game ends with no sale. If only one bidder opts in, then 
that bidder gets the asset at the reserve price. (For expositional and notational ease, 
we focus on the case where the reserve price is ​0​ and a lone entrant therefore acquires 
the asset for free; a positive reserve is easily incorporated into the model and does 
not change our results.) In addition, the seller commits not to make public the mes-
sages that the bidders send to him, nor his response to those messages. Therefore, 
each bidder knows only whether or not she has advanced to the auction, and does 
not gain any additional information about which (if any) of the other bidders have 
also advanced. This nondisclosure commitment is important because if a bidder were 
to learn that she is facing maximal competition in the auction, it would sometimes  
be in her interest to drop out of the bidding to avoid incurring the entry cost.12

In an English auction, a bidder who advances has a (weakly) dominant strategy 
to bid her valuation, regardless of the message she sent in the first stage. Therefore, 
in what follows, we assume that conditional on advancing, bidder ​i​ bids ​​V​i​​​ in the 
auction. Let ​​S​−i, n​​​ and ​​V​−i, n​​​ denote, respectively, the vectors of signals and values 
of bidder ​i​’s ​n − 1​ opponents in the auction. Then, conditional on being selected 
and performing due diligence, bidder ​i​’s ex post payoff before costs is ​​V​i​​​ if she 
advances alone, and ​max  { 0, ​V​i​​ − max {​V​−i, n​​}}​ if she advances against ​n − 1​ oppo-
nents. Given ​​S​i​​,​ her interim expected payoff before costs from advancing against ​
n − 1​ opponents with types ​​S​−i, n​​​ is therefore

	​ ​u​n​​ (​S​i​​, ​S​−i, n​​)  ≡ ​ E​(​V​1​​,…, ​V​n​​|​S​1​​,…,​S​n​​)​​ (​max​ 
​
​​ ​  {0, ​V​i​​ − ​max​ 

​
​​ ​  {​V​−i, n​​}})​

11 As we discuss in the Appendix, symmetric equilibria fail to exist when the set of allowed messages is con-
tinuous, or more accurately, when for any two permitted messages, there is always another message between them. 

12 More generally, nondisclosure strengthens a seller’s bargaining position when only one bidder is seriously 
interested in buying the asset. Subramanian (2010) offers a couple of funny stories on how sellers keep bidders in 
the dark as to the number of competitors they face. 
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and her expected payoff is

	​ ​u​1​​ (​S​i​​)  ≡ ​ E​​V​i​​|​S​i​​​​ (​V​i​​)​

if she advances alone.
We assume that expected auction payoffs depend on initial types in the expected 

way (or that types are ordered in the natural direction).

ASSUMPTION 1: 

	 (a)	​ ​u​1​​(​S​i​​)​ is continuous and strictly increasing in ​​S​i​​​.

	 (b)	 For each ​n  >  1​, ​​u​n​​ (​S​i​​, ​S​−i, n​​)​ is continuous in its ​n​ arguments; weakly 
increasing in ​​S​i​​​; weakly decreasing in ​​S​−i, n​​​; and strictly increasing in ​​S​i​​​ if ​​
S​i​​  ≥  max {​S​−i, n​​}​.

If ​{​S​i​​, ​V​i​​}​ are independent across ​i​ , then a sufficient condition for the monotonic-
ity conditions to hold is for ​(​S​i​​, ​V​i​​)​ to be affiliated. (The continuity conditions follow 
from continuity of the joint distribution of ​(S, V )​.) Finally, we assume that the entry 
cost ​c​ is neither “too large” nor “too small.”

ASSUMPTION 2: 

	 (a)	​ c  < ​ u​1​​ (1).​

	 (b)	 For every ​​s​i​​  ∈  [0, 1]​, ​​u​2​​ (​s​i​​, ​s​i​​)  <  c​.

Assumption 2(a) is simply the requirement that the game is nontrivial: that the 
entry cost is not so large as to completely preclude entry. Assumption 2(b) is more 
substantive: it requires the entry cost to be high enough that a bidder only wants 
to enter the auction against an opponent if her type (i.e., initial signal) is greater 
than her opponent’s type. It is essentially a restriction on the information rents bid-
ders can earn from due diligence, and we therefore refer to it as the “small rents” 
assumption.

While Assumption 2(b) is most transparently satisfied when little is learned 
during due diligence, it does not require this; what it requires is that the information 
different bidders learn about their valuations during due diligence is highly cor-
related. For example, if ​​V​i​​  = ​ S​i​​ + ​T​i​​​ , with ​{​T​i​​}​ independent of ​{​S​i​​}​ representing a 
new signal each bidder observes during due diligence, then Assumption 2(b) would 
be satisfied if ​{​T​i​​}​ were sufficiently highly correlated across ​i​ , since bidders would 
compete away any rents associated with learning the realization of ​​T​i​​​. In the extreme 
case where ​{​T​i​​}​ are perfectly correlated, we could think of them as a common com-
ponent of value, with bidders already knowing the “idiosyncratic” part of their 
valuation for the company (synergies across activities, for example). This may be a 
reasonable approximation for corporate acquisitions, since due diligence is mostly 
about checking for hidden liabilities and other “skeletons in the closet,” which might 
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impact all buyers in a similar way. (Ultimately, whether the information rents earned 
during due diligence are large or small relative to participation costs is an empirical 
question, and we plan to address it in future empirical work.)

Combined with our other assumptions, Assumption 2(b) implies that there is 
some ​ε  >  0​ such that ​​u​2​​ (​s​i​​, ​s​j​​)  ≥  c​ requires ​​s​i​​  ≥ ​ s​j​​ + ε​. This gives some intu-
ition for Ye’s (2007) result that an indicative bidding game cannot have a fully sep-
arating equilibrium: in any symmetric equilibrium, if her opponents were bidding 
“truthfully,” a bidder would have an incentive to misrepresent her type downward 
by at least ​ε​ , to avoid being selected in some scenarios where her expected payoff in 
the auction would be less than the participation cost. Thus, this ​ε​ is in a sense anal-
ogous to the bias between sender and receiver preferences in Crawford and Sobel 
(1982).13 However, the fact that buyers do not always gain from participating in the 
auction is what ensures that buyer and seller incentives are sufficiently aligned for 
cheap talk to be informative. The seller wants to restrict the number of buyers (since 
he bears some of the participation cost indirectly through its effect on participa-
tion), without excluding the strongest buyers; while the buyers want to avoid being 
selected and paying the entry cost when they are unlikely to win. Thus, low types 
will try to separate themselves from high types by sending lower messages; and 
sellers will happily exclude them in favor of bidders with higher types. (In contrast, 
if too much idiosyncratic learning occurred during due diligence, then buyers would 
always want to enter the auction regardless of their types, and cheap talk would 
unravel. We discuss relaxing Assumption 2(b) in a later section.)

The indicative bidding game can be thought of as a cheap talk game with com-
mitment. The messages of the bidders (senders) influence which action the seller 
(receiver) takes but, given that action, they do not affect the payoffs of the play-
ers. In the standard cheap talk game, the space of messages is unrestricted, and the 
receiver chooses an action that is his best response to the messages sent. By contrast, 
in the indicative bidding game (as is standard in auctions), the seller commits to 
the mechanism. In particular, he commits to a rule that selects bidders based on the 
messages they send, and ignores messages outside the set of allowed ones.14

II.  Equilibrium Characterization and Existence

Next, we define strategies, payoffs, and equilibrium for this model, establish 
some properties of any symmetric equilibrium, and establish that a symmetric equi-
librium always exists.

13 We thank Navin Kartik for this observation. Note that the “bias” in our model goes in the opposite direction 
as in Crawford and Sobel: in the classic sender-receiver game, the sender wants to misrepresent his type upward, 
while in our setting, a buyer would like to misrepresent her type downward. 

14 Ex interim, once the messages are received, it would typically be in the seller’s interest to allow more than ​
n​ bidders to advance. However, on the equilibrium path, subject to the constraint of not advancing more than ​n​ 
bidders, the seller is selecting the bidders he would want to if he was not committed to a selection rule. Thus, as 
we discuss in Section V, the equilibrium we find in the next section would still be an equilibrium if the seller had 
complete freedom to choose whichever bidders he wanted, rather than being committed to choosing those who 
submitted the highest indicative bids; but like in standard cheap talk games, we would also have less-informative 
equilibria in this case. 
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Given our model, the particular environment facing a seller is characterized by 
the number of bidders ​N​, the joint distribution of signals and valuations ​(S, V )​, and 
the entry cost ​c​. The particular indicative bidding mechanism faced by bidders is 
characterized by the maximal number of bidders who will advance to the auction ​n​ 
and the number of opt-in messages allowed ​​ 

_
 M ​​. A pure strategy for bidder ​i​ consists 

of a message function

	​ ​τ​i​​  :  [0, 1]  →  {0, 1,  … , ​ 
_

 M ​}​

that maps the set of types to the set of messages; a mixed strategy is a mapping 
from ​[0, 1]​ to probability distributions over ​{ 0, 1,  … , ​ 

_
 M ​}​. The support of a strategy 

is defined to be the set of messages played with positive probability by a positive 
measure of types.

Our objective is to characterize symmetric equilibria. Consequently, we need 
only define the expected payoff to bidder ​i​ when her ​N − 1​ opponents all play a 
common strategy. Let ​​v​τ​​ (m; s)​ denote the expected payoff to a bidder with type ​
s​ if she sends message ​m​ and her opponents are all playing the strategy ​τ​. (Since 
the game is symmetric, we do not index ​​v​τ​​ ( · ; · )​ by the identity of the bidder ​i​.) A 
pure-strategy symmetric Bayesian-Nash equilibrium (BNE) is then a strategy ​τ​ such 
that ​​v​τ​​ (τ (s); s)  ≥ ​ v​τ​​ (m′; s)​ for all ​m′  ∈  { 0, 1,  … , ​ 

_
 M ​}​ and ​s  ∈  [0, 1]​.15

Under the assumptions stated above, we can establish two key properties which 
must hold in any symmetric equilibrium, and which allow us to characterize what 
any symmetric equilibrium must therefore “look like.”

LEMMA 1: Given an environment and an indicative bidding mechanism, if ​τ​ is 
a symmetric equilibrium, then (i) ​τ​ is weakly increasing, and (ii) ​τ​ has support  
​{ 0, 1,  … , M}​ for some finite ​M​.

Thus, any symmetric equilibrium (should one exist) has the same structure as 
the cheap talk equilibria of Crawford and Sobel (1982): the type space ​[0, 1]​ is par-
titioned into a finite number of subintervals ​[0, ​α​0​​]​, ​[​α​0​​, ​α​1​​]​,  … , ​[​α​M−1​​, 1]​; bidders 
with types in the interior of each subinterval pool on the same message; and bidders 
with types at the boundary ​​α​m​​​ between two subintervals send either message ​m​ or ​
m + 1​ or mix between the two.16

Lemma 1 says that even when ​​ 
_

 M ​​ is infinite, only finitely many messages are 
used in equilibrium. Since we assume the seller is committed to advancing the bid-
ders who sent the highest messages, it may seem counterintuitive that even a bid-
der with the highest type is not williing to separate herself by sending a higher, 
out-of-equilibrium message and advancing for certain. However, were she to make 
such a deviation, the increase in her probability of advancing would arise solely 
from breaking ties against opponents who are sending the highest equilibrium  

15 A mixed-strategy symmetric BNE is a strategy ​τ​, such that ​​v​τ​​ (m; s)  ≥ ​ v​τ​​ (m′; s)​ for all ​m′  ∈  { 0, 1,  … , ​ 
_

 M ​}​ , 
all ​m​ on which ​τ  (s)​ places positive probability, and all ​s  ∈  [0, 1]​. 

16 In the knife-edge case of indifference, a bidder with type ​​S​i​​  =  1​ might send any message in the set  
​{ M, M + 1,  … , ​ 

_
 M ​}​ , or any mixture among them. 
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message ​M​ , and therefore have types within the highest subinterval ​[​α​M−1​​, 1]​. As 
more messages get used, this interval gets sufficiently small that under Assumption 
2(b), even the highest type’s payoff against a randomly selected opponent drawn 
from this interval would be negative. When this is the case, she will not want to 
separate herself by sending a higher message.

Lemma 1 gives only necessary, not sufficient, conditions for a strategy ​τ​ to be a 
symmetric equilibrium. It turns out that in addition to these conditions, two more 
turn out to be sufficient.

LEMMA 2: Let ​τ​ be a weakly increasing strategy with support ​{ 0, 1,  … , M}​ for 
some ​M  <  ∞​. For ​m  =  0, 1,  … , M − 1​, define ​​α​m​​​ as the supremum of the set of 
bidder types who send message ​m​ with positive probability. Then ​τ​ is a symmetric 
equilibrium if and only if:

	 (i)	​ ​v​τ​​ (m; ​α​m​​)  = ​ v​τ​​ (m + 1; ​α​m​​)​ for ​m  =  0, 1,  … , M − 1​, and

	 (ii)	 either ​M  = ​ 
_

 M ​​ (the support of ​τ​ includes all available messages) or ​​
v​τ​​ (M; 1)  ≥ ​ v​τ​​ (M + 1; 1)​, and ​τ (1)​ puts probability ​1​ on message ​M​ unless ​​
v​τ​​ (M; 1)  = ​ v​τ​​ (M + 1; 1)​.

Necessity of both of these conditions is straightforward: the first follows from 
continuity of each payoff function ​​v​τ​​ (m; · )​, and the second is required for a bidder 
with type ​​S​i​​  =  1​ to be playing a best-response. The significant part of Lemma 2 is 
that these conditions are sufficient: that if a partitional strategy is found satisfying 
indifference of the threshold types, and unused messages (if they exist) are not a 
profitable deviation for a bidder with the highest type, then the strategy in question 
is a symmetric equilibrium. This allows us to prove existence constructively, via an 
algorithm that finds exactly such a strategy, leading to the following result.

THEOREM 1: Fix an environment and an indicative bidding mechanism. A symmet-
ric equilibrium exists. Further, given the environment and ​n​ , there is a number ​​M​​ ∗​​ , 
with ​1  ≤ ​ M​​ ∗​  <  ∞​, such that …

•	 if ​​ 
_

 M ​  ≤ ​ M​​ ∗​​, a symmetric equilibrium exists in which all available messages 
are used with positive probability;

•	 if ​​ 
_

 M ​  > ​ M​​ ∗​​ , a symmetric equilibrium exists in which only the messages ​
{ 0, 1,  … , ​M​​ ∗​}​ are used .

Thus, a symmetric equilibrium can always be found in which exactly ​min {​ 
_

 M ​, ​M​​ ∗​}​  
opt-in messages are used.

In two special cases, we can show that this is essentially the unique symmetric 
equilibrium. Maintaining the normalization that ​​S​i​​  ∼  U [0, 1]​, if either …

	 (i)	​ ​V​i​​  =  u(​S​i​​)​, with ​u​ increasing and weakly convex, or

	 (ii)	​ n  =  2​ and ​​V​i​​  =  β ​S​i​​ + ​T​i​​​ , with ​{​T​i​​}​ independent of ​{​S​i​​}​,
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then the equilibrium found in Theorem 1 is (up to the strategies of the indifferent 
types ​{​α​m​​}​) the only symmetric equilibrium.17 In the more general case, we are 
not certain whether uniqueness holds, and if not, how much multiplicity to expect. 
However, in a sense, this can be thought of as an empirical problem. The construc-
tive proof of Theorem 1 also offers a simple and computationally feasible way, given 
a particular environment and mechanism, to exhaustively search for all symmetric 
equilibria.

III.  Illustration of Equilibrium Construction

A. Preliminaries

In this section, we use an example to illustrate the construction of a symmetric 
equilibrium. For the example, we let ​​V​i​​  = ​ S​i​​​ , and therefore assume that ​{​V​i​​}​ are 
independently and identically distributed uniformly on ​[0, 1]​ and known perfectly 
prior to due diligence.18 In this case, the payoffs to a bidder from advancing to the 
auction stage depends only on the number and distribution of opponents who send 
the highest message, as opponents who send lower messages have lower values and 
are certain to bid less and lose. This property helps to simplify the calculation of 
bidders’ payoffs.

Suppose bidder ​i​ with type ​​s​i​​​ is told that she has been selected and that her ​k​ high-
est opponents have types drawn (uniformly) from the interval ​[a, b]​. For a given real-
ization ​​s​​ ∗​​ of the highest opponent’s type, bidder ​i​’s payoff is ​max  { 0, ​s​i​​ − ​s​​ ∗​} − c​.  
The CDF of this highest opponent type is ​Pr (​s​​ ∗​  <  s)  = ​​ ((s − a)/(b − a))​​​ k​​ , and 
its density function is therefore ​k ​(s − a)​​ k−1​/​(b − a)​​ k​​. Thus, conditional on her 
own type ​​s​i​​​, advancing to the auction, and facing a set of opponents of whom ​k​ 
have types in ​[a, b]​ and the remainder have types below ​a​ , we can write bidder ​i​’s 
expected payoff as

	​ V(​s​i​​, k,  [a, b])  = ​ ∫ 
a
​ 
b
​​ ​max​ 

​
​​ ​  {0, ​s​i​​ − s} ​  k ____ 

b − a ​ ​​(​ s − a ____ 
b − a ​)​​​ 

k−1
​ ds − c​.

Note that this payoff does not depend on the message bidder ​i​ herself sent, nor on 
the messages of opponents who did not advance.

As noted earlier, for any strategy ​τ​ satisfying the conditions of Lemma 1, we can 
associate with the strategy a series of thresholds ​​α​0​​  < ​ α​1​​  <  ⋯  < ​ α​M−1​​​ sepa-
rating the subintervals of types sending each message. Since ​α  =  (​α​0​​,  … , ​α​M−1​​)​  
fully determines the strategy of all but a measure ​0​ of bidder types, a bidder’s 
expected payoff depends on her opponents’ strategy ​τ​ only through the thresholds ​
α​ associated with it; hereafter, we will write expected payoffs as ​​v​α​​ ( · ; · )​ rather 

17 In these two cases, the additional properties (discussed in the online Appendix) that allow us to establish 
uniqueness of the symmetric equilibrium also lead to proofs of certain comparative statics. For example, in both 
cases, ​​M​​ ∗​​ is decreasing in ​c​; in the latter case, ​​M​​ ∗​​ is also decreasing in ​N​, and (if ​{​T​i​​}​ are independent across bid-
ders) weakly increases when a mean-preserving spread is applied to the distribution of ​​T​i​​​. 

18 This is also equivalent to the case where ​​V​i​​  = ​ S​i​​ + ​T​i​​​ , where ​{​T​i​​}​ are learned during due diligence but are 
perfectly correlated across bidders, so that if two or more bidders enter, the rents from the realization of ​{​T​i​​}​ are 
fully competed away. 
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than ​​v​τ​​ ( · ; · )​ to emphasize this. For any opt-in message, the unconditional expected 
payoff to bidder ​i​ if her type is ​​s​i​​​ , she sends message ​m​ , and her opponents are all 
playing a strategy ​τ​ described by a series of thresholds ​α​ is given by

(1)  ​  ​v​α​​ (m; ​s​i​​)  = ​ α​ 0​ N−1​ (​s​i​​ − c)

	 + ​ ∑ 
​m ′ ​=1

​ 
m−1

 ​​ ​ ∑ 
h=1

​ 
N−1

​​​(​N − 1​ 
h
  ​)​ ​(​α​​m ′ ​​​ − ​α​​m ′ ​−1​​)​​ h​ ​(​α​​m ′ ​−1​​)​​ N−1−h​ 

	 × V(​s​i​​, min  { n − 1, h}, [​α​​m ′ ​−1​​, ​α​​m ′ ​​​])​

	 + ​ ∑ 
j=1

​ 
N−1

​​​(​N − 1​ j  ​)​ ​(​α​m​​ − ​α​m−1​​)​​ j​ ​(​α​m−1​​)​​ N−1−j​ min​{1, ​  n ___ j + 1 ​}​ 

	 × V(​s​i​​, min  { n − 1, j}, [ ​α​m−1​​, ​α​m​​])​

	 + ​ ∑ 
k=1

​ 
n−1

​​ ​ ∑ 
j=0

​ 
N−2

​​​(​N − 1​ 
k
  ​)​ ​(​N − 1 − k​ j  ​)​ ​(1 − ​α​m​​)​​ k​ ​(​α​m​​ − ​α​m−1​​)​​ j​

​		  × (​α​m−1​​)​​ N−1−k−j​ min​{1, ​ n − k ___ 1 + j ​}​ V(​s​i​​, k, [​α​m​​, 1])​.

This expression groups the profiles of opponent messages under which bidder ​i​ 
advances into four terms depending on the highest message sent by her opponents:

•	 The first term covers profiles in which bidder ​i​ is the only buyer to opt-in. She 
advances for sure, pays ​c​, and gets the asset at a price of 0.

•	 The second term covers events in which the highest opt-in message sent by any 
of ​i​’s opponents, ​m​′, is less than ​m​ , and the number of opponents sending this 
message is ​h​. In this case, bidder ​i​ advances for sure. Her expected payoff con-
ditional on advancing depends upon the number of opponents who send mes-
sage ​m′​ and advance; this number is ​h​ if ​h  <  n − 1​ and ​n − 1​ if ​h  ≥  n − 1​.

•	 The third term covers events in which the highest opt-in message sent by ​i​’s 
opponents is ​m​ , and the number of opponents sending ​m​ is ​j​. Bidder ​i​ advances 
for sure if ​j  <  n​, and with probability ​n/( j + 1)​ otherwise. Conditional on 
advancing, the number of opponents determining bidder ​i​’s payoff is either ​j​ or ​
n − 1​, whichever is lower.

•	 The fourth term covers scenarios in which ​k  <  n​ of bidder ​i​’s oppo-
nents send messages higher than ​m​ , and ​j​ more opponents send message ​m​.  
If ​k + j  <  n​ , then bidder ​i​ advances for sure; if ​k + j  ≥  n​ , the ​k​ bidders who 
sent messages above ​m​ advance for sure, and bidder ​i​ advances with probability ​
(n − k)/( j + 1)​. If she does advance, her payoff is determined by the highest 
type among the ​k​ bidders sending messages above ​m​ , whose types are drawn 
from the interval ​[​α​m​​, 1]​.

When ​m  =  1​ , the second term in equation (1) vanishes and, when ​m  =  M,​ the last 
term vanishes. Finally, the payoff to opting out, ​​v​α​​ (0; ​s​i​​)​, is ​0​.

Equation (1) shows that ​​v​α​​ (m; ​s​i​​)​ depends on ​​α​m​​​ and the lower thresholds  
​{​α​0​​, ​α​1​​,  … , ​α​m−1​​}​ , but not on thresholds higher than ​​α​m​​​. In the event that bidder ​
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i​ advances to the second round after sending message ​m​ , every opponent with 
type above ​​α​m​​​, and who therefore sends a message higher than ​m​ , also advances. 
Consequently, bidder ​i​ can treat these opponents as random draws from the interval  
​[​α​m​​, 1]​, and the payoff from winning against them does not depend on how this 
interval is partitioned. This is not true for opponents who send messages less than ​m​.  
In this case, there is some probability that the opponent with the highest type may 
not advance if ​n − 1​ other opponents send the same message as she does. The likeli-
hood of this event depends on how the interval below ​​α​m−1​​​ is partitioned. However, 
since bidder ​i​ is certain to advance in this event, the payoff associated with it is the 
same whether she sends message ​m​ or ​m + 1​. As a result, it drops out of the differ-
ence ​​v​α​​ (m + 1; ​s​i​​) − ​v​α​​ (m; ​s​i​​)​, which then depends only on ​(​α​m−1​​, ​α​m​​, ​α​m+1​​)​.

B. Constructing the Equilibrium

As noted in Lemma 2, in a symmetric equilibrium, bidder ​i​ must be indifferent 
between sending message ​m + 1​ and ​m​ at ​​s​i​​  = ​ α​m​​​ for each ​m  ∈  { 0,  … , M − 1}​. 
Thus, a symmetric equilibrium must satisfy the ​M​ indifference conditions

	​ ​v​α​​ (m + 1; ​α​m​​) − ​v​α​​ (m; ​α​m​​)  =  0,    m  ∈  { 0,  … , M − 1}​.

As noted above, each indifference condition depends only on ​​α​m−1​​​ , ​​α​m​​​ , and ​​α​m+1​​​  
(or on ​​α​0​​​ and ​​α​1​​​ for the indifference condition ​​v​α​​ (1; ​α​0​​)  = ​ v​α​​ (0; ​α​0​​)  =  0​). 
Further, the difference ​​v​α​​ (m + 1; ​α​m​​) − ​v​α​​ (m; ​α​m​​)​ satisfies a strict single-crossing 
property in ​​α​m−1​​​; so for a given choice of ​​α​m​​​ and ​​α​m+1​​​, there is a unique value of ​​
α​m−1​​​ that satisfies ​​v​α​​ (m + 1; ​α​m​​) − ​v​α​​ (m; ​α​m​​)  =  0​. We exploit this fact to con-
struct the symmetric equilibrium “from the top down.”

Postponing (for now) the problem of calculating ​​M​​ ∗​​, given Theorem 1, we expect 
to find an equilibrium with ​M  = ​ 

_
 M ​​ if ​​ 

_
 M ​  < ​ M​​ ∗​​, and with ​M  = ​ M​​ ∗​​ otherwise. 

(In the former case, the second condition in Lemma 2 is automatically satisfied, 
so a solution to the ​M​ indifference conditions constitutes an equilibrium; in the 
latter case, we will still need to show separately that ​​v​α​​ (M + 1; 1)  ≤ ​ v​α​​ (M; 1)​.)  
Given this value of ​M​ , for ​t  ∈  [0, 1]​, define ​​α​M​​ (t)  =  1​ and ​​α​M−1​​ (t)  =  1 − t​.  
Define ​​α​M−2​​ (t)​ as the unique value of ​​α​M−2​​​ satisfying ​​v​α​​ (M; ​α​M−1​​ (t))  
= ​ v​α​​ (M − 1; ​α​M−1​​ (t))​ given ​​α​M​​  =  1​ and ​​α​M−1​​  =  1 − t​; as noted above, this 
value is uniquely defined. Similarly, define ​​α​M−3​​ (t)​ to satisfy ​​v​α​​ (M − 1; ​α​M−2​​ (t))  
= ​ v​α​​ (M − 2; ​α​M−2​​ (t))​ given the values of ​​α​M−1​​ (t)​ and ​​α​M−2​​ (t)​, and so on, until ​​
α​0​​ (t)​ is defined by ​​v​α​​ (2; ​α​1​​ (t))  = ​ v​α​​ (1; ​α​1​​ (t))​.

Now, letting ​α(t)  =  (​α​0​​ (t), ​α​1​​ (t),  … , ​α​M−1​​ (t))​, note that at every value of ​
t​ , ​α(t)​ satisfies the “top” ​M − 1​ indifference conditions by construction. Thus, if 
there is a value ​​t​​ ∗​​ of ​t​ at which the bottom indifference condition, ​​v​α(​t​​ ∗​)​​ (1; ​α​0​​ (​t​​ ∗​))  
= ​ v​α(​t​​ ∗​)​​ (0; ​α​0​​ (​t​​ ∗​))  =  0​ , is satisfied, then the thresholds ​α(​t​​ ∗​)​ will be an equilib-
rium. The proof of existence, then, involves showing that ​​v​α(t)​​ (1; ​α​0​​ (t))​ is positive 
at ​t  =  0​ , negative at large ​t​ , and continuous in between. Thus, a solution ​​t​​ ∗​​ exists 
to solve ​​v​α(t)​​ (1; ​α​0​​ (t))  =  0​ , and therefore to satisfy the ​M​ indifference conditions.

The only remaining issue is the value of ​​M​​ ∗​​. When ​M  = ​ M​​ ∗​  < ​ 
_

 M ​​, it’s nec-
essary for equilibrium that bidders with the highest type ​​S​i​​  =  1​ be unwilling to 
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deviate from message ​M​ (the highest message being used in equilibrium) to higher, 
unused messages, in order to advance to the auction for certain. By sending message ​
M​ , bidder ​i​ is already assured of advancing except when at least ​n​ other bidders send 
message ​M​ as well, in which case every bidder advancing will have a type above ​​
α​M−1​​​. The condition for unused messages to be unprofitable deviations, then,

	​ ​v​α​​ (M + 1; 1)  ≤ ​ v​α​​ (M; 1)​

turns out to be equivalent to the condition

	​ V(1, n − 1, [​α​M−1​​, 1])  ≤  0​

i.e., that a bidder with type ​​s​i​​  =  1​ does not make money, on average, from an auc-
tion fully stocked with competitors with types who send message ​M​ in equilibrium. 
Since the left-hand side of this latter expression is decreasing in ​​α​M−1​​​ , this in turn 
requires that ​​α​M−1​​​ be sufficiently close to ​1​. (If the interval ​[​α​M−1​​, 1]​ were large, a 
bidder with type ​​S​i​​  =  1​ would want to advance even if all her opponents were in 
this interval; if it is sufficiently small, however, she would not.) As ​M​ gets larger, the 
interval ​[​α​M−1​​, 1]​ gets narrower; by defining ​​M​​ ∗​​ as the highest value of ​M​ for which 
the construction above works, this condition ends up being automatically satisfied 
for ​M  = ​ M​​ ∗​​.19

It is worth noting that this final necessary condition for equilibrium when  
​​ 
_

 M ​  > ​ M​​ ∗​​ is analogous to the No Incentive To Separate (NITS) condition intro-
duced by Chen et al. (2008).20 In their model, it is an equilibrium refinement, and 
selects a unique equilibrium, the one with the maximal number of messages. In our 
setting, since we assume the seller is committed to advancing bidders monotonically 
based on messages, this is not a refinement, but a condition that must be satisfied in 
any equilibrium where some messages are not used.

C. Features of Equilibrium

For a specific example of what the equilibrium looks like, we let ​N  =  5​; let  
​​V​i​​  = ​ S​i​​​ be drawn uniformly from the interval ​[0, 100]​ rather than ​[0, 1]​ (so the results 
are easier to read); and let ​c  =  5​. Table 1 reports the equilibrium thresholds, reve-
nues, bidder and total surplus for various values of ​​ 

_
 M ​​ when ​n  =  2​. In this example, ​​

M​​ ∗​  =  3​ , so when ​​ 
_

 M ​  ≥  3​ , the equilibrium uses only messages ​{ 0, 1, 2, 3}​. (If we 
tried to construct an equilibrium with more messages, we would fail because all the 
thresholds could not fit into the type space ​[0, 100 ]​.) When ​​ 

_
 M ​  <  3​ , bidders use all 

of the available messages. In these cases, the highest type would like to separate 
but cannot do so because of the constraint that the seller imposes on the size of the  

19 More formally, we define (in the proof of Theorem 1) ​​M​​ ∗​​ as the highest value of ​M​ for which ​​α​0​​  < ​ α​1​​  <  
⋯  < ​ α​M−2​​  < ​ α​M−1​​​ exist such that ​​α​M−1​​  = ​ α​M​​  =  1​; the indifference condition ​​v​α​​ (m + 1; ​α​m​​)  = ​ v​α​​ (m; ​α​m​​)​ 
holds at each ​m  =  1, 2,  … , M − 1​; and ​​v​α​​ (1; ​α​0​​)  >  0​. 

20 In their setting, NITS is the condition that the lowest-type sender would not choose to reveal his type truth-
fully if he could, while in our model, the condition is on the highest type. As noted above, the direction in which the 
sender/bidder would like to misrepresent his type goes in opposite directions in the two models. 
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message space. Note that the intervals are narrower at higher messages. In this sense, 
there is finer sorting at the top of the type space than at the bottom.21

As ​​ 
_

 M ​​ increases, the opt-in threshold ​​α​0​​​ decreases. As a result, both the proba-
bility that a bidder opts in and the expected number of bidders opting in increases 
with ​​ 

_
 M ​​. In addition, as ​​ 

_
 M ​​ increases and more messages are used, the bidders sort 

more effectively, and the selected bidders are more likely to be those with the high-
est types. Both of these effects favor higher revenue: greater participation means 
that the seller is more likely to sell the asset at a positive price (since this requires at 
least two bidders to opt in); and better selection implies that the seller is likely to sell 
for a higher price. Note, however, that bidder surplus goes the opposite direction, 
decreasing as ​​ 

_
 M ​​ increases. Bidders benefit heavily from being the only one to opt 

in, which is more likely when ​​ 
_

 M ​​ is lower; and they benefit from less effective sort-
ing, since it increases the chance they do not face the toughest possible competition. 
Still, the increase in revenue appears to dominate the decrease in bidder surplus: in 
every example we’ve solved, total surplus is increasing in ​​ 

_
 M ​​.22 Thus, when choos-

ing how much to restrict the message space, the seller does not face any trade-off 
between revenue and efficiency: both argue against restricting the set of messages 
more than necessary.23

IV.  Welfare and Revenue

In this section, we evaluate the performance of the indicative bidding mechanism. 
The benchmark we compare it to is an auction with unrestricted entry, where bidders 
choose (independently and simultaneously) whether to enter. The timing is the same 
as in our model: bidders learn their types ​​S​i​​​, decide simultaneously whether to enter, 

21 Under the two special cases noted above in which uniqueness holds, this property holds as well when the 
number of available messages is not a binding constraint, i.e., when ​​ 

_
 M ​  ≥ ​ M​​ ∗​​. 

22 We found the same result in numerical examples with private value updating, but these were limited to the 
case where ​n  =  2​ and ​​V​i​​  = ​ S​i​​ + ​T​i​​​ , with ​​T​i​​​ independently distributed according to an exponential distribution. 

23 We can similarly examine how the equilibrium partition, and expected payoffs, vary with the number of 
bidders ​n​ advancing to the second round. Here, even the interests of the seller and the buyers are aligned: in the 
examples we have examined, both expected revenue and bidder surplus are decreasing in ​n​. That is, both the seller 
and the bidders benefit from reducing the duplication of entry costs, and therefore setting ​n  =  2​ is optimal from 
both sides’ point of view. Without the “small rents” assumption, however, this would not necessarily be the case, as 
we discuss further in Section V. 

Table 1—Equilibrium Partition and Payoffs:  
​N  =  5​, ​​​​V​​i​​​​​  =  ​​​S​​i​​​​​  ∼  U[0, 100], c  =  5​, ​n  =  2​

Opt-in messages available (​​ 
_

 M ​​): 1 2 3+

​​α​3​​​ – – 100.00
​​α​2​​​ – 100.00 98.12
​​α​1​​​ 100.00 83.79 83.64
​​α​0​​​ 51.50 49.45 49.42

Revenue 53.67 57.21 57.26
Bidder surplus 16.96 15.44 15.42
Total surplus 70.63 72.65 72.68
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and then those who chose to enter incur the cost of due diligence, learn their values ​​
V​i​​​ , and submit binding bids.24 We continue to assume a second-price auction, so 
bidding truthfully remains a dominant strategy for those who enter. The symmetric 
equilibrium involves a cutoff strategy, in which bidders enter when their type ​​S​i​​​ is 
above some threshold ​γ​, which we refer to as the entry threshold; the number of 
entrants is therefore a binomially distributed random variable.

The comparison between the indicative bidding mechanism and a standard auc-
tion with endogenous entry involves a clear trade-off. On the one hand, by limiting 
the number of bidders who perform due diligence and make binding bids, the indic-
ative bidding mechanism introduces the risk that the seller will not receive bids from 
the “right” bidders—those with the two highest valuations among those who opted 
in. This could happen due to tiebreaking eliminating a bidder with one of the two 
highest initial signals, or due to a bidder with a lower initial signal having an unex-
pectedly high valuation. On the other hand, because the indicative bidding mecha-
nism reduces the “risk” to a marginal bidder who opts in—in the event competition 
is very strong, she won’t be selected and won’t incur the entry cost—it reduces the 
threshold at which bidders are willing to opt in, and therefore increases the likeli-
hood that two or more bidders opt in and the seller earns positive revenue.

To see which of these two effects dominates, we use the following example. We 
let ​​V​i​​  = ​ S​i​​ + ​T​i​​​ , where ​{​T​i​​}​ are new signals learned upon entry and are indepen-
dent of ​{​S​i​​}​. We let ​c  =  5​, ​{​S​i​​}​ be independently and identically distributed uni-
formly on ​[0, 100]​, and ​{​T​i​​}​ be independently and identically distributed according 
to the exponential distribution with parameter ​λ  =  0.12​.25

Table 2 shows expected payoffs for this example, comparing the indicative bid-
ding mechanism (with ​n  =  2​ and ​​ 

_
 M ​​ sufficiently large to not bind) to the standard 

auction with unrestricted entry. As noted above, for every ​N​ , ​​α​0​​​ is less than ​γ​ , that 
is, stochastically more bidders opt in under indicative bidding than enter the unre-
stricted auction. This means that both the probability of a sale and the probability of 
positive revenue are higher with indicative bidding. However, since entry is capped 
at two, the expected revenue conditional on at least two bidders entering is lower 
with indicative bidding. Still, the effect of greater participation appears to consis-
tently dominate the effect of lesser selection: in this example, as well as in every 
other example we’ve solved, revenue, bidder surplus, and total surplus are all higher 
under indicative bidding.26

24 This is therefore the “selective entry model” considered by Marmer, Shneyerov, and Xu (2013), but without 
their assumption that ​(​V​i​​, ​S​i​​)​ are independent across bidders. The model can be thought of as a hybrid between the 
model of Levin and Smith (1994), in which bidders have no private information at the time of entry, and the model 
of Samuelson (1985), in which bidders know their valuations prior to entry and do not update at all post-entry. 

25 The exponential distribution was chosen because ​​T​i​​ − ​T​j​​​ then follows a Laplace distribution, making ​​u​2​​ (​s​i​​, ​s​j​​)​  
straightforward to calculate. In this case, ​E max  { 0, ​T​i​​ − ​T​j​​}  = ​  1 __ 

2λ ​  =  4 ​ 1 _ 6 ​  <  c​ , so the “small rents” assumption 
holds. 

26 The dominance of the indicative bidding mechansim depends on the message space being unconstrained. 
When ​N​ is low and ​​ 

_
 M ​  =  1​—bidders are restricted to just opting in or opting out, rather than sorting themselves 

more finely through differential indicative bids—the selection effect (the risk of not advancing the right bidders) 
is exacerbated, and revenue is lower than under unrestricted entry. In all of the numerical examples we’ve run, 
however, indicative bidding has consistently Pareto-dominated unrestricted entry when ​​ 

_
 M ​  ≥ ​ M​​ ∗​​ , i.e., when the 

number of messages available is not a binding constraint. 
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While we cannot prove that this result holds universally, we can prove that it 
always holds when ​N​ is sufficiently large. Intuitively, as ​N​ gets large, the risk under 
indicative bidding of selecting the “wrong” bidders shrinks, as only bidders with 
types close to ​1​ opt in, and the participation effect dominates. In fact, it’s relatively 
easy to characterize limiting behavior in both the indicative bidding mechanism 
and the unrestricted auction as ​N​ grows, making the comparison straightfor-
ward when ​N​ is sufficiently large. When ​N​ is large, any symmetric equilibrium 
of the indicative bidding game has ​M  =  1​ (only messages ​0​ and ​1​ are used).  
Further, as ​N​ grows, the opt-in threshold ​​α​0​​​ under indicative bidding and the entry 
threshold ​γ​ for the unrestricted auction both approach ​1​ at rate ​1/N​, so the number 
of bidders opting in (or entering) approaches a Poisson distribution, with all bid-
ders entering having types arbitrarily close to ​1​. This allows us to easily charac-
terize expected payoffs in the limit for both mechanisms, leading to the following 
results.27

THEOREM 2: Fix an environment other than ​N​. For any indicative bidding mech-
anism ​(n, ​ 

_
 M ​)​, if ​N​ is sufficiently large, expected revenue and total surplus are both 

strictly higher than in an unrestricted auction.

Note that as ​N​ grows, the optimal reserve price in the auction with unrestricted 
entry goes to ​0​, so we are comparing to the “optimal” standard auction. In the case 
of large ​N​ , we can also characterize which indicative bidding mechanisms perform 
best.

27 Table 2 showed that not only did the indicative bidding mechanism outperform the unrestricted auction in 
expected revenue and total surplus, but also in bidder surplus. While we can’t prove this in full generality even for 
large ​N​ , we can prove it in the special case where ​​V​i​​​ is additively separable into independent components learned 
before and after entry. Specifically, if ​​V​i​​  =  u(​S​i​​) + ​T​i​​​ , where ​u​ is strictly increasing and continuously differen-
tiable and ​{​T​i​​}​ are independent of ​{​S​i​​}​ (but not necessarily independent across ​i​), then for any indicative bidding 
mechanism ​(n, ​ 

_
 M ​)​, if ​N​ is sufficiently large, bidder surplus is strictly higher than in an unrestricted auction. The 

analogue to Theorem 3 holds as well: if ​​V​i​​​ is additively separable and ​N​ is sufficiently large, bidder surplus is strictly 
decreasing in ​n​ , strictly decreases if a reserve price is used, and strictly increases if a small entry subsidy is used. 

Table 2—Indicative Bidding (​n  =  2​, ​M  = ​​​ M​​​ ∗​​​​) versus Unrestricted Entry, Various ​N​

Potential bidders (​N​) 3 4 5 7 10 20 50 200

Panel A. Indicative bidding

​​α​0​​​ (“opt-in” threshold) 29.59 38.49 45.48 55.66 65.40 79.88 90.82 97.40

Revenue 50.50 59.52 65.63 73.42 79.98 88.77 95.20 99.50
Bidder surplus 23.79 19.50 16.63 12.98 9.95 5.96 3.12 1.24
Total surplus 74.29 79.02 82.25 86.40 89.92 94.73 98.32 100.74

Panel B. Unrestricted entry

​γ​ (entry threshold) 33.56 44.65 52.68 63.33 72.53 84.84 93.39 98.25

Revenue 50.04 58.24 63.58 70.15 75.65 83.22 89.27 93.28
Bidder surplus 22.91 18.40 15.55 12.15 9.39 5.76 2.87 0.80
Total surplus 72.95 76.63 79.12 82.30 85.03 88.98 92.14 94.08
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THEOREM 3: Fix an environment other than ​N​. If ​N​ is sufficiently large …

	 (i)	 The set of messages ​​ 
_

 M ​​ doesn’t matter, as ​M  =  1​ in equilibrium.

	 (ii)	 Expected revenue and total surplus are both strictly decreasing in ​n​.

	 (iii)	 For any given indicative bidding mechanism ​(n, ​ 
_

 M ​)​ ,

		  •	�A positive reserve price would strictly reduce both expected revenue and 
total surplus.

		  •	�A small entry subsidy would strictly increase both expected revenue and 
total surplus.

Proofs of Theorems 2 and 3 are given in the Appendix, but much of the intuition 
can be gained rather quickly. In both the indicative bidding mechanism and the unre-
stricted auction, as ​N​ grows, total bidder surplus goes to ​0​,28 so showing that total 
surplus is higher with indicative bidding, or decreases with ​n​, or decreases with a 
positive reserve price, also establishes the same properties for revenue.

The key to all of these results is that participation in the indicative bidding mech-
anism, while higher than participation in the unrestricted auction, is still below the 
socially optimal level. This is shown formally in the Appendix, but can best be 
understood in the following way. In a standard English auction with private values, 
one bidder’s entry decision imposes no net externality on the rest of the environ-
ment. (If the new entrant wins, her payoff is the difference between her own valu-
ation and the second-highest, which is exactly her contribution to social surplus. If 
she loses and sets the price, her presence transfers surplus from the winner to the 
seller; if she loses and doesn’t set the price, her presence has no effect.) However, 
in the indicative bidding mechanism, a bidder’s entry decision can impose an exter-
nality, because her choice to opt in might lead to another bidder not advancing to 
the auction. This happens only when at least ​n​ bidders are already opting in, and 
therefore the auction would be “full” regardless. When ​N​ is large, all entrants have 
roughly the same type, so a marginal entrant’s entry decision (when at least ​n​ others 
are opting in) does not affect the seller’s or the other entrants’ expected payoffs; 
the bidder who would have advanced otherwise but now does not, by the small 
rents assumption, was anticipating a negative payoff from the auction, and so the 
net externality caused by the entrant is positive. As a result, participation is below 
the socially optimal level, and any change that increases participation—lowering ​n​, 
reducing the reserve price, or subsidizing entry—increases total surplus on the mar-
gin via participation. And none of these changes lower total surplus directly; so each 
of them increases surplus overall, and therefore increases revenue as well.

28 Expected bidder surplus must be ​0​ at type ​​S​i​​  = ​ α​0​​​ or ​​S​i​​  =  γ​ , so if the effect of ​​S​i​​​ on the distribution of ​​V​i​​​ is 
bounded, a single bidder’s ex ante expected surplus can be thought of as the area of a triangle whose base and height 
are both proportional to ​1/N​ , so the ​N​ bidders’ combined surplus is proportional to ​N/​N​​ 2​  =  1/N​. 
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V.  Extensions

A. Pure Cheap Talk

As is usual in the mechanism design literature, we have assumed the seller can 
credibly commit to the mechanism used, which includes how he responds to each 
message. Thus, the messages are not true cheap talk, as their “meaning” is built into 
the mechanism.

However, we can easily reverse this assumption. Suppose that bidders have a 
true “opt out” option, but beyond that, the indicative bids they submit (or the mes-
sages they send) are not binding on the seller in any way; the seller is committed to 
advancing a maximum of ​n​ bidders to the auction (and is committed to an English 
auction with no reserve price), but can select whichever bidders he wants out of 
those who opted in.

In this case (assuming ​​ 
_

 M ​​ is large), a symmetric equilibrium exists with ​M​ 
opt-in messages used, for each ​M  =  1, 2, 3,  … , ​M​​ ∗​​. Returning to Lemma 2, 
the second condition for equilibrium no longer needs to hold, since pessimistic 
off-equilibrium-path beliefs by the seller can be used to deter deviations away from 
any smaller set of equilibrium messages. Thus, for any ​M​ , we can find the thresholds  
​(​α​0​​,  … , ​α​M−1​​)​ satisfying the ​M − 1​ indifference conditions, and use those to con-
struct equilibrium strategies. Thus, if indicative bids are pure cheap talk, the equi-
librium we found earlier is still an equilibrium, but we are now subject to the usual 
multiplicity problem common to cheap talk games.

B. Relaxing “Small Rents”

We have focused on the case of “small rents,” imposing the assumption that  
​​u​2​​ (​s​i​​, ​s​j​​)  <  c​ for ​​s​j​​  ≥ ​ s​i​​​. This is a key step in showing that ​​v​τ​​ (m + 1; ​α​m​​) −  
​v​τ​​ (m; ​α​m​​)​ is single-crossing in ​​α​m−1​​​ , allowing us to construct equilibrium thresh-
olds “down from the top” of the type space.

Based on numerical examples, “small” violations of this inequality do not have a 
discontinuous effect on equilibrium. But without this assumption, we cannot in gen-
eral prove existence of a symmetric equilibrium. However, if we focus on the case 
of large ​N​ , we can characterize what must happen in any symmetric equilibrium, 
should one exist.

Let ​​u​n​​ (1, 1)​ denote the expected auction payoff to a bidder with type ​​S​i​​  =  1​ 
facing ​n − 1​ opponents with type ​1​ as well. Since ​​u​n​​ (1, 1)​ is decreasing in ​n​, define ​​
n​​ ∗​​ as the unique solution to

	​ ​u​​n​​ ∗​​​ (1, 1) − c  >  0  ≥ ​ u​​n​​ ∗​+1​​ (1, 1) − c​.

Thus, ​​n​​ ∗​​ is the largest auction in which a bidder with type ​​S​i​​  =  1​ would willingly 
compete, even if all her competitors were as strong as she. (The small rents assump-
tion would imply that ​​n​​ ∗​  =  1​.) Consider the generic case where both inequalities 
hold strictly.
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If ​n  > ​ n​​ ∗​​ , then as ​N​ gets large, equilibrium is similar to the “small rents” case 
already analyzed. Very strong bidders opt in, but in the hope that the auction will not 
be “full”; conditional on ​n − 1​ other bidders entering, they would anticipate a nega-
tive expected payoff. Only messages ​0​ and ​1​ are used in equilibrium, and the opt-in 
threshold ​​α​0​​​ goes to ​1​ at rate ​1/N​. Above ​​n​​ ∗​​, for the same reasons as in Theorem 3 
above, revenue and total surplus are decreasing in ​n​.

If ​n  ≤ ​ n​​ ∗​​, however, things change. A bidder with type ​​S​i​​  ≈  1​ anticipates a pos-
itive expected payoff from advancing to the auction, even if the auction is “full” 
and even if all her competitors are also strong. Thus, if ​​ 

_
 M ​  =  ∞​, no symmetric 

equilibrium can exist: the highest type of bidder would always want to deviate to a 
higher message. If ​​ 

_
 M ​​ is finite, however, symmetric equilibrium may exist. Let ​ξ​ be 

the solution to

	​ V(ξ, n − 1,  [ξ, 1])  =  0​

so that a bidder with type ​​S​i​​  =  ξ​ is exactly indifferent to entering an auction against ​
n − 1​ opponents with types above ​ξ​. In the limit as ​N​ gets large, in any symmetric 
equilibrium, all bidders with types in the interval ​[ξ, 1]​ pool on the highest available 
message ​​ 

_
 M ​​. While we can’t tell exactly what the lower types are doing, it doesn’t 

matter for payoffs, as when ​N​ is sufficiently large, more than ​n​ bidders will have 
types above ​ξ​ with probability going to ​1​. Thus, there will be no chance of the object 
not selling; the only inefficiency comes from the fact that with ​ξ​ bounded away from ​
1​, the bidders advancing will not be the strongest ones. For this reason, increasing ​ξ​ 
increases both revenue and total surplus, by improving selection; and as a result of 
this, below ​​n​​ ∗​​, revenue and total surplus are increasing in ​n​.

Thus, assuming symmetric equilibrium always exists, both revenue and total sur-
plus are single-peaked in ​n​, with an optimum of either ​n  = ​ n​​ ∗​​ or ​n  = ​ n​​ ∗​ + 1​.

C. First-Price Auctions

Finally, we consider an indicative bidding mechanism where the second-stage 
auction is a first price sealed-bid auction.

In a first-price auction, a bidder’s bid depends both on her own valuation  
and on her beliefs about her opponents’ valuations. This makes the analysis more 
complicated in a number of ways. While we do not have results about the existence 
of symmetric equilibrium in our general model, we can construct the equilibrium 
for the example in Section III (in which ​​V​i​​  = ​ S​i​​  ∼  U [0, 100]​) when ​n  =  2​,  
as an illustration of the fact that it may be possible more generally. In this 
example, a bidder will rationally update her beliefs about her opponents’ types  
based on the new information that she has advanced to the auction, but she does 
not receive any other information. Thus, there is no loss in imagining that each 
bidder solves a static problem, choosing both her message ​m​ and her bid ​b​ at the 
beginning, just choosing ​b​ optimally for the beliefs that will prevail should she 
advance. As a result, we can treat the game as a static game and use standard 
mechanism design tools like the envelope theorem to characterize the equilibrium 
bid function.
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A symmetric equilibrium will have the following properties:

	 (i)	 The type space is partitioned into subintervals by thresholds ​0  < ​ α​0​​  < ​ α​1​​  
<  ⋯  < ​ α​​ _ M ​−1​​  < ​ α​​ _ M ​​​  =  100​ , with types below ​​α​0​​​ opting out and types 
in the interval ​(​α​m−1​​, ​α​m​​)​ sending message ​m​.

	 (ii)	 On the equilibrium path, those bidders who advance bid ​β(​S​i​​)​, where  
​β(​α​0​​)  =  0​ and ​β​ is strictly increasing and continuous on ​[​α​0​​, 100]​.

It’s not hard to show these are necessary conditions for a symmetric equilibrium. 
(If there were discontinuities in ​β​ or if ​β(​α​0​​)  >  0​ , this would mean holes in the 
support of ​β(​S​i​​)​, which are impossible in a pay-as-bid auction with a symmetric 
equilibrium.) Along with these conditions, two more turn out to be necessary and 
sufficient for equilibrium: indifference of bidders with threshold types ​​α​m​​​ between 
sending message ​m​ (and then bidding ​β(​α​m​​)​ if selected) and sending message ​
m + 1​ (and then bidding ​β(​α​m​​)​); and an envelope theorem condition characterizing 
interim expected payoffs, which constrains the bid function ​β​. (This is formalized 
as Lemma 4 in the Appendix.)

In the case of second-price auctions, we constructed the equilibrium from 
the top down: we guessed a value of ​​α​M−1​​​ , calculated the other thresholds  
​​α​M−2​​, ​α​M−3​​,​​  … , ​α​0​​​ required to rationalize it (and each other), and checked whether 
these thresholds satisfied the “terminal” condition ​​v​τ​​ (1; ​α​0​​)  =  0​ , then adjusted the 
initial value of ​​α​M−1​​​ until we found thresholds that did. In the case of first-price 
auctions, we work in the other direction: we will guess a value of ​​α​0​​​ and build the 
equilibrium up from there, finally checking whether a terminal condition holds at 
the top of the type space. This is because in addition to calculating message thresh-
olds ​​α​m​​​ , we also need to construct the equilibrium bid function ​β​, and this is easier 
from the bottom of the type space.

The equilibrium construction is shown in the Appendix. We should note that we 
do not have a theoretical proof that this construction will always work. However, we 
have tried it numerically for various values of ​c​ , ​N​ , and ​​ 

_
 M ​​ , and have never yet failed 

to find an equilibrium.
To facilitate comparisons with the second-price auction, Table 3 illustrates the 

equilibrium for the numerical example of Section III in which ​c  =  5​ , ​N  =  5​ , and ​
n  =  2​. For each value of ​​ 

_
 M ​​, there is a unique symmetric equilibrium in which all 

of the messages are used. The intervals are narrower at higher messages, so there is 
finer sorting at the top of the type space, particularly at higher values of ​​ 

_
 M ​​. Even 

though bidders now use all of the available messages, the impact of the additional 
messages becomes minimal very quickly. The lower thresholds quickly asymptote, 
as do expected payoffs; the additional messages only serve to divide up the very top 
of the type space more finely. For example, when ​​ 

_
 M ​  =  10​ , the top four messages 

are used only by bidders with types above ​99.44​, and ​90 percent​ of bidders who opt 
in use message ​1​, ​2​, or ​3​. In fact, up to the precision shown in Table 3, revenue and 
bidder surplus do not change with ​​ 

_
 M ​​ once ​​ 

_
 M ​​ is above ​4​. Thus, even though there 

is no “natural” upper bound on the number of messages, this property turns out not 
to be payoff-relevant.

This content downloaded from 
������������128.104.46.196 on Tue, 07 Feb 2023 17:24:57 UTC������������� 

All use subject to https://about.jstor.org/terms



140	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� MAY 2018

The above example illustrates an important difference between the equilibrium 
of first-price and second-price mechanisms. A bidder in a first-price auction always 
shades her bid by more than ​c​ below her value and since she pays her bid, she always 
earns a positive payoff from winning. Consequently, the small rents assumption no 
longer implies a minimal width for each element of the equilibrium type partition, 
and there is therefore no natural upper bound on the number of messages used in 
equilibrium. Furthermore, the bidder with the highest possible type strictly prefers 
to advance to the auction even if her opponents have types very close to her own. 
This means that no matter how narrow the top interval gets, a bidder with the highest 
type would still choose to deviate if an unused high message was available so that 
she can be selected with probability 1. Hence, all messages are used and an equilib-
rium is only possible when ​​ 

_
 M ​  <  ∞​.

As in the second-price mechanism, as ​​ 
_

 M ​​ increases, expected revenue increases 
due to both greater participation and finer selection; bidder surplus decreases; and 
total surplus increases. Comparing Table 3 to Table 1, revenue and total surplus 
are marginally higher under the first-price than under the second-price mechanism, 
but this has nothing to do with the extra messages used, as it holds for ​​ 

_
 M ​​ as low 

as ​2​. Instead, this appears to be driven by the equilibria shown in Table 3 having 
a slightly lower opt-in threshold ​​α​0​​​ , and having thresholds which are more evenly 
distributed across the interval ​[0, 100]​, leading to both more participation and bet-
ter sorting. (Consistent with our earlier discussion, these same differences also 
lead to bidder surplus being lower in the first-price mechanism, but total surplus  
being higher.)

In the case of private value updating (where new information about ​​V​i​​​ is learned 
during due diligence), equilibrium would be more complicated, because for a given 
realized valuation ​​V​i​​​ , a bidder’s second-stage bid will still depend on the message 
she sent at the first stage. (This is because she rationally updates her beliefs about 
her opponents’ types conditional on the event that she herself advanced to the auc-
tion, and this updating depends on the message that she herself sent.) Even in the 
simple example where ​​V​i​​  = ​ S​i​​​ , a bidder who deviated in the first stage would also 

Table 3—N  =  5​, ​​​​V​​i​​​​​  =  ​​​S​​i​​​​​  ∼  U [0, 100], c  =  5​, ​n  =  2​, First-Price Auction, Various ​​​​ 
_

 M ​​

Opt-in messages available (​​ 
_

 M ​​)
1 2 3 4 5 7 10

​​α​10​​​ – – – – – – 100.00
​​α​9​​​ – – – – – – 99.94
​​α​8​​​ – – – – – – 99.87
​​α​7​​​ – – – – – 100.00 99.73
​​α​6​​​ – – – – – 99.47 99.44
​​α​5​​​ – – – – 100.00 98.83 98.83
​​α​4​​​ – – – 100.00 97.71 97.56 97.56
​​α​3​​​ – – 100.00 95.21 94.91 94.89 94.89
​​α​2​​​ – 100.00 89.92 89.27 89.21 89.20 89.20
​​α​1​​​ 100.00 78.47 76.96 76.82 76.81 76.81 76.81
​​α​0​​​ 51.50 48.54 48.26 48.24 48.23 48.23 48.23

Revenue 53.67 57.40 57.69 57.71 57.71 57.71 57.71
Bidder surplus 16.96 15.45 15.33 15.32 15.32 15.32 15.32
Total surplus 70.63 72.84 73.02 73.03 73.03 73.03 73.03
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optimally bid differently in the second stage, and we would need to account for 
“two-stage deviations” like this in verifying that we have found an equilibrium.

VI.  Conclusion

We have developed a theory of indicative bidding. The theory establishes that, 
when entry is costly and expected rents from the private information obtained from 
entry are small relative to those costs, a seller can use indicative bids to “thin the field” 
and then hold an auction among a smaller number of buyers. The indicative bids are 
informative, and their use often leads to greater efficiency and higher revenue than an 
auction with unrestricted entry, particularly when the number of buyers is large. The 
theory explains the widespread use of indicative bidding in takeover auctions, where 
buyers need to conduct costly due diligence prior to submitting binding bids.

The theory also provides an empirical framework for structural estimation of 
takeover auctions. The goal would be to use observable variation in the number 
of potential buyers, the number and bids of buyers submitting indicative bids, the 
number and bids of buyers submitting final bids, and the deal premium across het-
erogeneous auctions to estimate entry costs and the joint distribution of signals and 
values of buyers. Estimates of these model primitives could be used to quantify how 
much information buyers gain from due diligence (allowing one to directly test the 
“small rents” assumption) and to study how the deal premia would change if the tar-
get firm were sold via a negotiation rather than an auction. Gentry and Stroup (2017) 
develops an estimation strategy to address these issues but, due to limited data at the 
time, did not use information on indicative bids.29 Our theory suggests that these 
bids provide useful information for identifying and estimating model primitives and 
should be incorporated into the econometric model.

Mathematical Appendix

This Appendix contains proofs of Theorems 2 and 3 (the revenue and efficiency 
properties of the indicative bidding mechanism when ​N​ is large), as well as the 
construction of the equilibrium for a first-price auction with indicative bidding 
(Section V). Since much of the intuition for equilibrium construction (and therefore 
existence) for second-price auctions is given in the example in the text, the full proof 
of Theorem 1 (and the related lemmas) is contained in a separate, online Appendix. 
The online Appendix also contains a discussion of the results on uniqueness of equi-
librium (discussed in Section II following Theorem 1) and proofs of the bidder 
surplus results for large ​N​ (discussed in footnote 27).

A. Preliminaries

To begin, we prove one fact mentioned in the text, which we will make use of 
multiple times below.

29 They (private communication, September 9, 2016) are in the process of using the SEC filings to construct a 
more detailed dataset on takeover auctions that includes information on indicative bids. 
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LEMMA 3: There exists ​ε  >  0​ such that ​​u​2​​ (​s​i​​, ​s​j​​)  ≥  c​ requires ​​s​i​​  > ​ s​j​​ + ε​.

PROOF:
This follows from the assumptions that ​​u​2​​ ( · , · )​ is continuous in both arguments 

and ​​u​2​​ (s, s)  <  c​ for every ​s​. Suppose it were false. Then, for any ​δ  >  0​ , one could 
find ​s  ∈  [δ, 1]​ such that ​​u​2​​ (s, s − δ)  ≥  c​. Let ​​δ​ℓ​​  =  1/ℓ​ , and let ​​{​s​ℓ​​}​ℓ=1, 2,… ​​​ be a 
sequence such that ​​u​2​​ (​s​ℓ​​, ​s​ℓ​​ − ​δ​ℓ​​)  ≥  c​ for every ​ℓ​. Since ​​s​ℓ​​  ∈  [0, 1]​ are bounded, ​​
{​s​ℓ​​}​ℓ=1, 2,… ​​​ has a convergent subsequence; let ​​{​s​j(k)​​}​k=1, 2,… ​​​ be such a subsequence, 
and let ​​s​∗​​  =  lim ​s​j(k)​​​. Then ​​u​2​​ (​s​j(k)​​, ​s​j(k)​​ − ​δ​j(k)​​)  ≥  c​ for every ​k​ , with ​{​s​j(k)​​}  → ​ s​∗​​​ 
and ​{​δ​j(k)​​}  →  0​; by continuity of ​​u​2​​​ , ​​u​2​​ (​s​∗​​, ​s​∗​​)  ≥  c​ , giving a contradiction. ​∎​

B. Characterization of Equilibrium as ​N​ Gets Large

For ​N​ Large Enough, ​M  =  1​ in Every Symmetric Equilibrium.—Let ​ε​ be the 
value defined in Lemma 3. Suppose an equilibrium existed with ​M  >  1​. As we 
show in the proof of Theorem 1 in the online Appendix, this would require ​​u​2​​ (​α​1​​, ​α​0​​)  
>  c​, which in turn requires that ​​α​1​​ − ​α​0​​  >  ε​ and therefore ​​α​0​​  <  1 − ε​.  
Let ​− ​ u _ ​  = ​ max​ s∈[0, 1]​ ​ ​​ {​u​2​​ (s, s) − c}​​ be the largest (i.e., least negative) pay-
off a bidder can get from entering against an equally strong opponent; and let ​​ 

_
 V ​  

=  E(​V​i​​ | ​S​i​​  =  1)​.
Consider a bidder with type ​​S​i​​  = ​ α​0​​​. If she opts in, she has a ​​α​ 0​ N−1​​ chance of 

being the only one to enter, in which case her payoff will be ​E(​V​i​​ | ​S​i​​  = ​ α​0​​) − c  
<  E(​V​i​​ | ​S​i​​  =  1) − c  = ​ 

_
 V ​ − c​; and a probability ​(N − 1) ​α​ 0​ N−2​ (1 − ​α​0​​)​ of 

advancing against one other opponent with type above ​​α​0​​​ and therefore earning a 
payoff at most ​− ​ u _ ​​. Thus, even ignoring all the scenarios in which multiple other 
bidders opt in and she may advance and earn a negative expected payoff, our bid-
der’s payoff from opting in is at most

	​ ​v​τ​​ (1; ​α​0​​)  ≤ ​ α​ 0​ N−1​​(​ 
_

 V ​ − c)​ − (N − 1) ​α​ 0​ N−2​ (1 − ​α​0​​)​ u _ ​

	 ≤ ​ α​ 0​ N−2​​[​α​0​​​(​ 
_

 V ​ − c)​ − (N − 1) ε​ u _ ​]​ 

	 ≤ ​ α​ 0​ N−2​ ε​ u _ ​​[​ ​ 
_

 V ​ − c ____ ε​ u _ ​ ​  − (N − 1)]​​,

since ​​α​0​​ ≤ 1​. Thus, for ​N > 1 + ​ ​ 
_

 V ​ − c ____ ε​ u _ ​ ​ ​, ​​v​τ​​ (1; ​α​0​​)​ would have to be strictly negative 
in a symmetric equilibrium with ​M > 1​, and therefore no such equilibrium can exist.

As ​N​ grows, ​​α​0​​  →  1​ but ​​α​ 0​ N​ ↛ 0​ or ​1​.—As noted above,

	​ ​v​τ​​ (1; ​α​0​​)  ≤ ​ α​ 0​ N−1​​(​ 
_

 V ​ − c)​ − (N − 1) ​α​ 0​ N−2​ (1 − ​α​0​​)​ u _ ​

	 ≤ ​ α​ 0​ N−2​​[​(​ 
_

 V ​ − c)​ − (N − 1) (1 − ​α​0​​)​ u _ ​]​​.

If ​​α​0​​​ does not go to ​1​, or converges at a rate slower than ​1/N​ , then ​(N − 1) (1 − ​α​0​​)  
→  +∞​, in which case ​​v​τ​​ (1; ​α​0​​)  <  0​ , which is impossible.
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However,

	​ ​v​τ​​ (1; ​α​0​​)  ≥ ​ α​ 0​ N−1​​(E(​V​i​​ | ​S​i​​  = ​ α​0​​) − c)​ + ​(1 − ​α​ 0​ N−1​)​(−c)​,

since ​E(​V​i​​ | ​S​i​​  = ​ α​0​​) − c​ is the bidder’s payoff if all of her opponents opt out and ​
− c​ is a lower bound on her payoff if they don’t. If ​​α​0​​​ converges to ​1​ faster than ​1/N​ , 
then ​(N − 1)(1 − ​α​0​​)  →  0​ , which means ​​α​ 0​ N−1​  →  1​. (If the expected number of 
opponents opting in goes to ​0​ , then the probability that none of them enter goes to ​1​.)  
In that case, ​​v​τ​​ (1; ​α​0​​)  →  E(​V​i​​ | ​S​i​​  =  1) − c  >  0​ , again a contradiction. So ​​α​0​​​ 
must go to ​1​ at rate ​1/N​ , making ​​α​ 0​ N​​ converge to an interior limit.

This means as ​N​ grows, the number of bidders opting in approaches a Poisson 
random variable, with all entrants having types arbitrarily close to ​1​. We can cal-
culate the Poisson parameter by noting that, even away from the limit, ​​α​0​​​ satisfies

	​ 0  = ​  ∑ 
k=0

​ 
n−1

​​ ​Pr​ 
​
​
​
 ​  (k : N − 1) V(​α​0​​, k, [​α​0​​, 1]) 

	 + ​ ∑ 
k=n

​ 
N−1

​​ ​Pr​ 
​
​
​
 ​  (k : N − 1) ​  n ____ 

k + 1 ​ V(​α​0​​, n − 1, [ ​α​0​​, 1] )​,

where ​Pr (k  :  N − 1)​ is the probability that exactly ​k​ of a bidder’s ​N − 1​ opponents 
opt in and (as before) ​V(​α​0​​, k, [​α​0​​, 1])​ is the expected surplus (net of costs) a bidder 
with type ​​α​0​​​ earns in an auction with ​k​ opponents with types drawn randomly from ​
[​α​0​​, 1]​. As ​N​ grows and ​​α​0​​  →  1​ ,

	​ V(​α​0​​, k, [​α​0​​, 1])  →  V(1, k,  {1})  = ​ u​k+1​​ (1, 1) − c​,

and ​Pr (k  :  N − 1)​ approaches the probability defined by the Poisson distribution. 
Let ​​u​k​​  ≡ ​ u​k​​ (1, 1)​; in the limit, the equilibrium participation level ​​λ​n​​​ is the solution to

	​ 0  = ​  ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  (​u​k+1​​ − c) + ​ ∑ 

k=n
​ 

∞
 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 

k ! ​ ​   n ___ 
k + 1 ​ (​u​n​​ − c)​​.

To show that this has a unique solution, define the right-hand side as ​​V​n​​ (λ)​, and 
note that

 ​ ​ ∂ __ ∂ λ ​ ​V​n​​ (λ)  = ​  ∑ 
k=1

​ 
n−1

​​ ​ k ​λ​​ k−1​ ​e​​ −λ​ ______ 
k ! ​  (​u​k+1​​ − c) − ​ ∑ 

k=0
​ 

n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  (​u​k+1​​ − c)

	 + ​ ∑ 
k=n

​ 
∞

 ​​ ​ k ​λ​​ k−1​ ​e​​ −λ​ ______ 
k ! ​ ​   n ___ 

k + 1 ​ (​u​n​​ − c) − ​ ∑ 
k=n

​ 
∞

 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​ ​   n ___ 

k + 1 ​ (​u​n​​ − c)

	 = ​  ∑ 
k′=0

​ 
n−2

 ​​ ​ ​λ​​ k′​ ​e​​ −λ​ ____ 
k′! ​  (​u​k′+2​​ − c) + ​  ∑ 

k′=n−1
​ 

∞
  ​​ ​ ​λ​​ k′​ ​e​​ −λ​ ____ 

k′! ​  ​  n ____ 
k′ + 2 ​ (​u​n​​ − c) − ​V​n​​ (λ)​​.

Now, the two sums are negative, since ​​u​k​​  <  c​ for ​k  >  1​ under small rents; so 
this says that whenever ​​V​n​​​ is positive, it’s strictly decreasing in ​λ​ , so it’s strictly 
single-crossing from above; so if a solution exists, it’s unique. Thus, ​​V​n​​ (0)  = ​ u​1​​ − 
c  >  0​ , and it’s not hard to show that ​​V​n​​​ is negative when ​λ​ gets large, so a solution 
does indeed exist.

This content downloaded from 
������������128.104.46.196 on Tue, 07 Feb 2023 17:24:57 UTC������������� 

All use subject to https://about.jstor.org/terms



144	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� MAY 2018

Limit Welfare.—When ​M  =  1​, total surplus generated in equilibrium can be 
written as

	​ W(n, N  )  = ​  ∑ 
k=0

​ 
n−1

​​ ​Pr​ 
​
​
​
 ​  (k : N  )(​w​k​​ (​α​0​​) − kc) + ​ ∑ 

k=n
​ 

N

  ​​ ​Pr​ 
​
​
​
 ​  (k : N  )(​w​n​​ (​α​0​​) − nc)​,

where ​Pr (k  :  N  )​ is the probability that exactly ​k​ out of ​N​ bidders opt in and  
​​w​k​​ (​α​0​​)​ is the expected total surplus (gross of entry costs) generated by an auction 
with ​k​ bidders with types ​​s​i​​  ∈  [​α​0​​, 1]​. If we let

	​ ​w​k​​  = ​  lim​ 
​α​0​​→1

​ 
​
 ​ ​ w​k​​ (​α​0​​)  =  E​{​max​ 

​
​​ ​  {​V​1​​,  … , ​V​k​​} | ​S​1​​  =  ⋯  = ​ S​k​​  =  1}​​,

then as ​N​ gets large and ​​α​0​​  →  1​, ​​w​k​​ (​α​0​​)  → ​ w​k​​​. As ​N​ gets large, ​Pr (k  :  N  )​ goes 
to the Poisson distribution, so

	​ ​W​n​​  ≡ ​  lim​ 
N→∞

​ 
​
  ​ W(n, N )  = ​  ∑ 

k=0
​ 

n−1

​​ ​ ​λ​ n​ k ​ ​e​​ −​λ​n​​​ ____ 
k ! ​  (​w​k​​ − kc) + ​ ∑ 

k=n
​ 

∞
 ​​ ​ ​λ​ n​ k ​ ​e​​ −​λ​n​​​ ____ 

k ! ​  (​w​n​​ − nc)​,

where ​​λ​n​​​ is the equilibrium Poisson parameter.
Now, fixing ​n​ , let

	​ ​W​n​​ (λ)  ≡ ​  ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  (​w​k​​ − kc) + ​ ∑ 

k=n
​ 

∞
 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 

k ! ​  (​w​n​​ − nc)​

so that ​​W​n​​  = ​ W​n​​ (​λ​n​​)​ but ​​W​n​​ ( · )​ is also defined at nonequilibrium levels of partic-
ipation. Next, we calculate

	​ ​ ∂ __ ∂ λ ​ ​W​n​​ (λ)  = ​  ∑ 
k=1

​ 
n−1

​​ ​ k ​λ​​ k−1​ ​e​​ −λ​ ______ 
k ! ​  (​w​k​​ − kc) − ​ ∑ 

k=0
​ 

n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  (​w​k​​ − kc)

	 + ​ ∑ 
k=n

​ 
∞

 ​​ ​ k ​λ​​ k−1​ ​e​​ −λ​ ______ 
k ! ​  (​w​n​​ − nc) − ​ ∑ 

k=n
​ 

∞
 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 

k ! ​  (​w​n​​ − nc)

	 = ​  ∑ 
​k ′ ​=0

​ 
n−2

 ​​ ​ ​λ​​ ​k ′ ​​ ​e​​ −λ​ ____ 
​k ′ ​!

 ​  (​w​​k ′ ​+1​​ − (k′ + 1) c) − ​ ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​ (​w​k​​ − kc)

	 + ​  ∑ 
​k ′ ​=n−1

​ 
∞

  ​​ ​ ​λ​​ ​k ′ ​​ ​e​​ −λ​ ____ 
​k ′ ​!

 ​  (​w​n​​ − nc) − ​ ∑ 
k=n

​ 
∞

 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  (​w​n​​ − nc)​

(​​ k ​λ​​ k−1​ ​e​​ −λ​ ______ 
k ! ​   = ​  ​λ​​ k−1​ ​e​​ −λ​ _____ (k − 1)! ​​; the first and third sums then simply substitute ​k​′ for ​k − 1​,  

changing the range over which the sum is taken accordingly). Simplifying, then,

	​ ​ ∂ __ ∂ λ ​ ​W​n​​ (λ)  = ​  ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  (​w​k+1​​ − ​w​k​​ − c)​.

The next cool thing to notice: ​​w​k+1​​ − ​w​k​​  = ​ u​k+1​​​! This is because in a private-val-
ues auction, a single bidder’s expected payoff is exactly her contribution to total 
surplus—the expected difference between the highest valuation when she’s there 
and the highest valuation when she’s not. So,

	​ ​ ∂ __ ∂ λ ​ ​W​n​​ (λ)  = ​  ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  (​u​k+1​​ − c)​.
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Note that this is exactly the first term in the expression for ​​V​n​​ (λ)​ , and that the second 
term in ​​V​n​​ (λ)​ is negative, so ​​ ∂ __ ∂ λ ​ ​W​n​​ (λ)  > ​ V​n​​ (λ)​. But we know that for ​λ  ≤ ​ λ​n​​​,  
​​V​n​​ (λ)  ≥  0​, and therefore ​​ ∂ __ ∂ λ ​ ​W​n​​ (λ)  >  0​. So for participation levels at and below 
the equilibrium level, ​W​ is strictly increasing in participation.

Limit Bidder Surplus Is ​0​.—Since ​​λ​n​​​ is (by virtue of being the Poisson parameter) 
the expected number of bidders opting in, if we write ​​α​0​​​ as ​​α​0​​ (N )​ to emphasize its 
dependence on ​N​ , as ​N​ gets large,

	​ N(1 − ​α​0​​ (N  ))  → ​ λ​n​​​.

For ​N​ large, then, ​1 − ​α​0​​ (N )  ≈ ​ λ​n​​/N​ , or

	​ ​α​0​​ (N )  ≈  1 − ​ ​λ​n​​ __ 
N

 ​​.

Suppressing the suffix on ​λ​ and the dependence of ​​α​0​​​ on ​N​ , we know a bidder’s 
expected payoff is

	​ ​v​τ​​ (1; ​s​i​​)  = ​  ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  V(​s​i​​, k, [​α​0​​, 1]) + ​ ∑ 

k=n
​ 

∞
 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 

k ! ​ ​   n ___ 
k + 1 ​ V(​s​i​​, n − 1, [​α​0​​, 1])​.

Since ​​v​τ​​ (1; ​α​0​​)  =  0​ in equilibrium, we can subtract that off and write this as

	​ ​v​τ​​ (1; ​s​i​​)  = ​  ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​ ​ (V(​s​i​​, k, [​α​0​​, 1]) − V(​α​0​​, k, [​α​0​​, 1]))​

	 + ​ ∑ 
k=n

​ 
∞

 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​ ​   n ___ 

k + 1 ​​(V(​s​i​​, n − 1, [​α​0​​, 1]) − V(​α​0​​, n − 1, [​α​0​​, 1]))​​

and therefore

	​ ​v​τ​​ (1; ​s​i​​)  ≤ ​  ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​​ (V(1, k, {​α​0​​}) − V(​α​0​​, k,  {1}))​ 

	 + ​ ∑ 
k=n

​ 
∞

 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​ ​   n ___ 

k + 1 ​​(V(1, n − 1, {​α​0​​}) − V(​α​0​​, n − 1,  {1}))​​.

Now, a single bidder’s ex ante expected surplus is

	​ u  = ​ ∫ 
0
​ 
​α​0​​

​​ ​v​τ​​ (0; ​s​i​​) d​s​i​​ + ​∫ ​α​0​​
​ 

1
 ​​ ​v​τ​​ (1; ​s​i​​) d​s​i​​  = ​ ∫ ​α​0​​

​ 
1
 ​​ ​v​τ​​ (1; ​s​i​​) d​s​i​​​.

Multiplying by ​N​ , then, total bidder surplus is

 ​ N · u  =  N ​∫ ​α​0​​
​ 

1
 ​​ ​v​τ​​ (1; ​s​i​​) d​s​i​​​​

	  ≤  N(1 − ​α​0​​)​[​ ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  ​(V(1, k, {​α​0​​}) − V(​α​0​​ , k,  {1}))​​

	 ​+ ​ ∑ 
k=n

​ 
∞

 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​ ​   n ___ 

k + 1 ​ ​(V(1, n − 1, {​α​0​​}) − V(​α​0​​ , n − 1,  { 1}))​]​​.
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As ​N  →  ∞​ , ​N(1 − ​α​0​​)  → ​ λ​n​​​; and by continuity, as ​​α​0​​  →  1​, each of the dif-
ference terms ​V(1, k, {​α​0​​}) − V(​α​0​​, k,  {1})​ in both summands go to ​0​, so the entire 
expression in square brackets goes to ​0​ , so total bidder surplus goes to zero.

C. Proof of Theorems 2 and 3

We prove Theorem 3 first. Part (i) (​M  =  1​ in any symmetric equilibrium) has 
already been shown above.

For part (ii), since limit bidder surplus is ​0​ , limit revenue equals limit welfare, so 
it suffices to show that ​​W​n​​​ is strictly decreasing in ​n​. We’ve shown that as ​N​ grows, 
total surplus approaches a limit ​​W​n​​ (​λ​n​​)​, where

	​ ​W​n​​ (λ)  = ​  ∑ 
k=0

​ 
n−1

​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 
k ! ​  (​w​k​​ − kc) + ​ ∑ 

k=n
​ 

∞
 ​​ ​ ​λ​​ k​ ​e​​ −λ​ ____ 

k ! ​  (​w​n​​ − nc)​

and that ​​W​n​​ (λ)​ is strictly increasing in ​λ​ on ​[0, ​λ​n​​]​. We also noted earlier that  
​​u​k​​  = ​ w​k​​ − ​w​k−1​​​, and by the small rents assumption, ​​u​k​​  <  c​ unless ​k  =  1​, which 
means ​​w​k​​ − kc​ is decreasing in ​k​. This means that fixing ​λ​, ​​W​n​​ (λ)​ is decreasing in ​n​, 
since decreasing ​n​ by one replaces a bunch of ​​w​n​​ − nc​ terms with ​​w​n−1​​ − (n − 1)c​,  
which is larger (less negative).

Next, note that ​​λ​n​​​ is decreasing in ​n​. This is because we can rewrite the expres-
sion defining ​​λ​n​​​ as

	​ 0  = ​  ∑ 
k=0

​ 
∞

 ​​ ​ ​λ​ n​ k ​ ​e​​ −​λ​n​​​ ____ 
k ! ​  h(k)​​​,

where

	​ h(k)  =  min​{1, ​  n ___ 
k + 1 ​}​(​u​min{n, k+1}​​ − c)​.

For ​n  >  1​, an increase in ​n​ weakly decreases all of the ​h(k)​ terms, since they’re all 
negative except for ​h(0)​ and adding either an opponent, or a greater chance of being 
selected when opposed, lowers a bidder’s expected payoff; we showed earlier that 
this expression is decreasing in ​λ​ until after it becomes negative, so lowering the ​
h(k)​ terms requires lowering ​λ​ to compensate.

All together, these imply that for ​n′  <  n​,

	​ ​W​n​​  = ​ W​n​​ (​λ​n​​)  < ​ W​n′​​ (​λ​n​​)  < ​ W​n′​​ (​λ​n′​​)  = ​ W​n′​​​ ,

i.e., limit total surplus is strictly decreasing in ​n​. Limit bidder surplus is ​0​ at every ​n​ , 
so limit revenue equals limit total surplus, and is therefore strictly decreasing in ​n​.

For part (iii), note that adding a reserve price simply lowers a bidder’s expected 
payoff ​V(​s​i​​, k, [​α​0​​, 1])​ in each state of the world where she advances, lowering 
each limit ​​u​k​​​. By the arguments above, this decreases ​λ​. Adding a reserve weakly 
decreases total surplus independent of ​λ​ , since it may prevent sales; and it decreases 
total surplus via ​λ​ , since surplus is increasing in ​λ​ at and below the equilibrium 
level. So adding a reserve lowers limit total surplus; it doesn’t change the fact 
that limit bidder surplus is ​0​ , so it lowers limit revenue as well. A bidder subsidy 
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works the opposite way; as long as it is small enough that the small rents assump-
tion continues to hold for the modified auction payoffs, and the resulting change 
in ​λ​ is small enough that it remains in the range where welfare is increasing, it 
increases limit total surplus. Once again, limit bidder surplus remains ​0​ , so limit  
revenue increases.

Finally, to prove Theorem 2, note that the unrestricted auction case is simply the 
special case of the indicative bidding game with ​n = ∞​, so that the cap on the num-
ber of bidders advancing to the second round never binds. This means Theorem 2 
follows as a corollary of Theorem 3 part (ii), since “decreasing in ​n​” implies “higher 
at finite ​n​ than infinite ​n​” implies “higher with indicative bidding than without.’’ ​∎​

D. Constructing Equilibrium for the First-Price Auction

Here, we show the construction of symmetric equilibrium in the indicative bid-
ding game when the auction is a first-price auction, ​n  =  2​ , and ​​V​i​​  = ​ S​i​​  ∼  U [0, 1]​.  
(The example in the text uses ​​V​i​​  = ​ S​i​​  ∼  U [0, 100 ]​ simply to make the results 
easier to read.)

First, we establish necessary and sufficient conditions for symmetric equilibrium. 
We focus on pure strategy equilibria; as in the case of second-price auctions, allow-
ing mixed strategies only expands the set of equilibrium strategies for a measure 
zero of bidders, and does not change the set of equilibrium payoffs.

A strategy will consist of a mapping

	​ τ  :  [0, 1]  →  {0, 1, 2,  … , ​ 
_

 M ​}​

from types to messages, and a mapping

	​ β  :  [0, 1]  → ​ ℝ​+​​​

from types to second-stage bids. (As noted in the text, a bidder learns nothing 
between the first and second stage other than whether or not she advanced to the 
auction, so there is nothing else to condition her bid on and no loss in assuming a 
bidder chooses her message and bid simultaneously.) We will let

	​ ​v​τ, β​​ (m, b; ​s​i​​)​

denote a bidder’s expected payoff given type ​​S​i​​  = ​ s​i​​​ if she sends message ​m​ and 
bids ​b​ if selected and her opponents are playing the strategy ​(τ, β)​; equilibrium con-
sists of a strategy ​(τ, β)​ such that

	​ ​v​τ, β​​ (τ (​s​i​​), β(​s​i​​); ​s​i​​)  ≥ ​ v​τ, β​​ (m, b; ​s​i​​)​

for every ​​s​i​​  ∈  [0, 1]​, every ​m  ∈  {0, 1,  … , ​ 
_

 M ​}​ , and every ​b  ∈ ​ ℝ​+​​​.
It is straightforward to show that if ​(τ, β)​ is a symmetric equilibrium, ​τ​ must be 

weakly increasing; as before, define ​​α​m​​​ as the supremum of the set of types playing 
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messages ​m​ or lower with positive probability. We can then write the probability of 
advancing to the auction, given ​τ​ and one’s own message ​m​ , as

 ​ ​L​τ​​ (m)  = ​ (​α​m−1​​)​​ N−1​ + ​ ∑ 
j=1

​ 
N−1

​​​(​N − 1​ j  ​)​ ​(​α​m​​ − ​α​m−1​​)​​ j​ ​(​α​m−1​​)​​ N−1−j​​(​  2 ___ j + 1 ​)​

	 + ​ ∑ 
j=0

​ 
N−2

​​ (N − 1)​(​N − 2​ j  ​)​(1 − ​α​m​​) ​(​α​m​​ − ​α​m−1​​)​​ j​ ​(​α​m−1​​)​​ N−j−2​​(​  1 ___ j + 1 ​)​.​

(The first term is the probability all of the other bidders send messages below ​m​.  
In the second term, ​j​ denotes the number of opponents sending message ​m​, with 
the rest of the opponents sending messages below ​m​, leading to a ​2/( j + 1)​ chance 
of advancing. In the third term, ​j​ again denotes the number of opponents sending 
message ​m​, with one opponent sending a message above ​m​ and the rest sending 
messages below ​m​, giving a ​1/( j + 1)​ chance of advancing.)

It is also straightforward to show that ​β​ must be strictly increasing, continuous, 
and satisfy ​β(​α​0​​)  =  0​. (If ​β(​α​0​​)  >  0​ or ​β​ were discontinuous, this would corre-
spond to a gap in the support of ​β(​S​i​​)​, which is impossible in a symmetric equi-
librium of a pay-as-you-bid auction.) Given these properties, for ​b  ∈  [β(​α​m−1​​),  
β(​α​m​​)]​ , we can write the probability of winning (i.e., the probability of advancing 
to the second stage and then outbidding one’s opponent) by sending message ​m​ and 
then bidding ​b​ as

​  ​Q​τ, β​​ (m, b) = ​(​α​m−1​​)​​ N−1​ 

	   + ​ ∑ 
j=1

​ 
N−1

​​​(​N − 1​ j  ​)​ ​(​α​m​​  −  ​α​m−1​​)​​ j​ ​(​α​m−1​​)​​ N−1−j​​(​  2 ___ j  +  1 ​)​​(​ ​β​​ −1​ (b)  −  ​α​m−1​​  _________ ​α​m​​  −  ​α​m−1​​ ​ )​.​

The first term is the probability that all of bidder ​i​’s opponents sent messages below ​
m​ , in which case bidder ​i​ will advance for sure and also be the high bidder for sure; 
the second term is the probability that bidder ​i​ will advance against an opponent who 
also sent message ​j​ (whose type is therefore uniformly distributed on ​[​α​m−1​​, ​α​m​​]​)  
times the probability of winning the auction against such an opponent. (Note that 
this expression only holds for “equilibrium combinations’’ of message and bid; for ​
m  ≠  τ (​β​​ −1​ (b))​, ​​Q​τ, β​​ (m, b)​ would take a different form.)

If we let ​Q(​s​i​​)  = ​ Q​τ, β​​ (τ (​s​i​​), β(​s​i​​))​ denote a bidder’s equilibrium probability 
of winning the auction, a standard envelope theorem argument establishes that the 
expected payoff to a bidder with type ​​S​i​​  = ​ s​i​​​ must be

	​ ​v​τ, β​​ (τ (​s​i​​), β(​s​i​​); ​s​i​​)  = ​ ∫ 
0
​ 
​s​i​​
​​ Q(s) ds​.

Since we can also decompose the equilibrium expected payoff as

	​ ​v​τ, β​​ (τ (​s​i​​), β(​s​i​​); ​s​i​​)  =  Q(​s​i​​)(​s​i​​ − β(​s​i​​)) − L(τ (​s​i​​)) c​,
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we can equate these two and find

	​ ​∫ 
0
​ 
​s​i​​
​​ Q(s) ds  =  Q(​s​i​​)(​s​i​​ − β(​s​i​​)) − L(τ (​s​i​​)) c​

from which we can calculate

	​ β(​s​i​​)  = ​ s​i​​ − ​  1 _____ 
Q(​s​i​​)

 ​​(​∫ 
0
​ 
​s​i​​
​​ Q(s) ds + L(τ   (​s​i​​)) c)​​.

This gives us the following necessary conditions for equilibrium, which also turn 
out to be sufficient.

LEMMA 4: Fix an indicative bidding mechanism ​(n, ​ 
_

 M ​)​ with ​n  =  2​ and ​​ 
_

 M ​  <  ∞​.  
A strategy ​(τ, β)​ is a symmetric equilibrium if and only if the following all hold:

•	​ τ​ is weakly increasing, and characterized by thresholds ​0  < ​ α​0​​  < ​ α​1​​  
<  ⋯  <   ​α​​ _ M ​−1​​  <  1​;

•	​ ​v​τ, β​​ (m, β(​α​m​​); ​α​m​​) = ​v​τ, β​​ (m + 1, β(​α​m​​); ​α​m​​)​ for each ​m = 0, 1, … , ​ 
_

 M ​ − 1;​

•	​ β​ is strictly increasing and continuous and ​β(​α​0​​)  =  0​;

•	​ β(​s​i​​)  = ​ s​i​​ − ​  1 ____ 
Q(​s​i​​)

 ​​(​∫ 
0
​ 
​s​i​​
​​ Q(s) ds + L(τ (​s​i​​)) c)​​.

The arguments for necessity have already been discussed. For sufficiency, as is 
usual in mechanism design problems, the envelope condition defining ​β​ is equiva-
lent to incentive compatibility, which rules out profitable deviations to other types’ 
equilibrium strategies. Ruling out deviations to off-equilibrium combinations of ​
(m, b)​ is tedious but mechanical. A full proof is available upon request.

Finally, we can construct a strategy ​(τ, β)​ satisfying the conditions of Lemma 4 
as follows. (We suppress the dependence of ​​v​τ, β​​ (m, b; ​s​i​​)​, ​​Q​τ, β​​ (m, b)​, and ​​L​ τ​​ (m)​ on ​
(τ, β)​.):

	 (i)	 Guess a value of ​​α​0​​​. Since a bidder can do no better than ​​V​i​​ − c  
= ​ S​i​​ − c​ by entering, ​​α​0​​​ must be greater than ​c​, so we start with a value of  
​​α​0​​ ∈ [c, 1]​.

	 (ii)	 Calculate the required value of ​​α​1​​​. Since ​v(0, β(​α​0​​); ​α​0​​)  =  v(1, β(​α​0​​); ​α​0​​)​ 
and ​β(​α​0​​)  =  0​ , we need

	​ 0  =  (​α​0​​ − 0) Q(1, 0) − L(1) c​.

		  Now, ​Q(1, 0)  = ​ α​ 0​ N−1​​ , since a bidder bidding ​0​ in the second stage will only 
win the auction if all her opponents opt out; this means

	​ 0  = ​ α​ 0​ N​ − L(1) c​.

This content downloaded from 
������������128.104.46.196 on Tue, 07 Feb 2023 17:24:57 UTC������������� 

All use subject to https://about.jstor.org/terms



150	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� MAY 2018

		  While it’s not immediately obvious, ​L(1)​ depends only on ​​α​0​​​ and ​​α​1​​​ and is 
strictly increasing in ​​α​1​​​ , and this therefore uniquely pins down the value of ​​
α​1​​​ given the value of ​​α​0​​​.

	 (iii)	 Calculate the bid function on ​[​α​0​​, ​α​1​​]​. Once ​​α​0​​​ and ​​α​1​​​ are known, we can 
calculate ​Q(s)​ on ​[​α​0​​, ​α​1​​]​, and therefore calculate ​β(​s​i​​)​ on ​[​α​0​​, ​α​1​​]​ via the 
envelope theorem condition.

	 (iv)	 Calculate the required value of ​​α​2​​​. Knowing the value of ​β(​α​1​​)​, the indiffer-
ence condition ​v(1, β(​α​1​​); ​α​1​​)  =  v(2, β(​α​1​​); ​α​1​​)​ becomes

   ​   Q(1, β(​α​1​​)) (​α​1​​ − β(​α​1​​)) − L(1) c  =  Q(2, β(​α​1​​)) (​α​1​​ − β(​α​1​​)) − L(2) c​.

		  We already noted that ​L(1)​ depends only on ​​α​0​​​ and ​​α​1​​​, as do ​Q(1, β(​α​1​​))​ 
and ​Q(2, β(​α​1​​))​. (While sending message ​2​ will make bidder ​i​ more likely 
to advance against an opponent who sent message ​2​ , she will never win the 
auction in those cases, so ​Q(2, β(​α​1​​))​ does not depend on ​​α​2​​​.) In contrast,  
​L(2)​ does depend on ​​α​2​​​ , and is strictly increasing, so this indifference condi-
tion uniquely pins down ​​α​2​​​ given what we already know.

	 (v)	 Calculate the bid function on ​[​α​1​​, ​α​2​​]​. Once ​​α​2​​​ is known, ​Q(s)​ can be calcu-
lated for ​s  ∈  [​α​1​​, ​α​2​​]​; from this, we can calculate ​β(​s​i​​)​ for ​​s​i​​  ∈  [​α​1​​, ​α​2​​]​.

	 (vi)	 Continue to iterate in this way. Once ​β(​α​2​​)​ is known, the indifference con-
dition at ​​α​2​​​ determines ​​α​3​​​; once ​​α​3​​​ is known, the envelope condition lets us 
recover ​β(​s​i​​)​ for ​​s​i​​  ∈  [​α​2​​, ​α​3​​]​; and so on.

	 (vii)	 Check the terminal condition at the top. Eventually, the indifference con-
dition at ​​α​​ _ M ​−1​​​ will determine a required value of ​​α​​ _ M ​​​​. If this is equal to ​1​, 
we’ve found an equilibrium; if not, we adjust our initial guess at ​​α​0​​​ and try 
again.

As we noted in the text, we do not have a proof that this construction will always 
succeed. (In particular, given ​{​α​0​​, ​α​1​​,  … , ​α​m​​}​ and ​β(​s​i​​)​ up to ​​α​m​​​ , we have not 
found a way to ensure that a value of ​​α​m+1​​​ exists satisfying the indifference condi-
tion ​v(m, β(​α​m​​); ​α​m​​)  =  v(m + 1, β(​α​m​​); ​α​m​​)​.) That said, the construction has suc-
ceeded for every value of ​c​ , ​N​ , and ​​ 

_
 M ​​ we’ve tried.
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